给定n,m和k,求有多少对(i , j)满
足0 ≤ i ≤ n, 0 ≤ j ≤ min(i ,m)且C(︀i,j)︀是k的倍数.
n,m ≤ 1018, k ≤ 100,且k是质数.

把i和j都看成k进制数,事实上这个问题就是问有多少
对j ≤ i满足j有一位比i大.

转化成数位DP

对每一位进行转移

bool判断是否当前位n<=a[i],m<=b[i]

By:大奕哥

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll inv=500000004ll;
int T;
ll f[][][],a[],b[],k; ll calc(ll x,ll y)
{
if(x<||y<)return ;
if(x<y)return 1ll*((x+)%mod*(x+)%mod)%mod*inv%mod;
return (1ll*(y+)%mod*((y+)%mod)%mod*inv%mod+1ll*(x-y)%mod*((y+)%mod)%mod)%mod;
}
int main()
{
scanf("%d%lld",&T,&k);
while(T--)
{
int n=,m=;long long x,y;
scanf("%lld",&x);ll t=x;
while(t)
{
a[++n]=t%k;t/=k;
}
scanf("%lld",&y);y=min(y,x);t=y;
while(t)
{
b[++m]=t%k;t/=k;
}
long long ans=calc(x,y);
f[][][]=;
for(int i=;i<=n;++i)
{
f[i][][]=(calc(a[i],b[i])*f[i-][][]%mod+calc(a[i],b[i]-)*f[i-][][]%mod+calc(a[i]-,b[i])*f[i-][][]%mod+calc(a[i]-,b[i]-)*f[i-][][]%mod)%mod;
f[i][][]=(calc(k-,b[i])*(f[i-][][]+f[i-][][])%mod+calc(k-,b[i]-)*(f[i-][][]+f[i-][][])%mod-f[i][][]+mod)%mod;
f[i][][]=(calc(a[i],k-)*(f[i-][][]+f[i-][][])%mod+calc(a[i]-,k-)*(f[i-][][]+f[i-][][])%mod-f[i][][]+mod)%mod;
f[i][][]=(((calc(k-,k-)*(f[i-][][]+f[i-][][]+f[i-][][]+f[i-][][])%mod-f[i][][]+mod)%mod-f[i][][]+mod)%mod-f[i][][]+mod)%mod;
}
printf("%lld\n",(ans-f[n][][]+mod)%mod);
while(n)a[n--]=;
while(m)b[m--]=;
}
}

UOJ275 组合数问题的更多相关文章

  1. UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】

    题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...

  2. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  3. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  4. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  5. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  6. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  7. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  8. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  9. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

随机推荐

  1. 【译】第十一篇 Integration Services:日志记录

    本篇文章是Integration Services系列的第十一篇,详细内容请参考原文. 简介在前一篇,我们讨论了事件行为.我们分享了操纵事件冒泡默认行为的方法,介绍了父子模式.在这一篇,我们会配置SS ...

  2. transform 动画效果

    http://www.css88.com/tool/css3Preview/Transform.html transform的含义是:改变,使…变形:转换 transform的属性包括:rotate( ...

  3. Oracle环境变量与中文显示的问题

    在CentOS(linux)下安装Oracle,对环境变量的设置有一些讲究. 一般我们可以把环境变量设置在/etc/profile文件中: # Oracle SettingsTMP=/tmp; exp ...

  4. 关于limit_req和limit_conn的区别

    1,首先,limit_req和limit_conn两个模块都是为了来限流的,但是两者不在一个层面,为了搞清楚这个,必须先要弄清楚request和connection的区别,因为在很多情况下,我们把他们 ...

  5. LINUX修改、增加IP的方法,一张网卡绑定多个IP/漂移IP【转】

    临时增加IP命令:ifconfig eth0:1 ip地址 netmask 子网码 broadcast 广播地址 gateway 网关  ifconfig eth0:1 10.1.104.65 net ...

  6. haproxy支持的负载均衡算法详解

    目前haproxy支持的负载均衡算法有如下8种: 1.roundrobin 表示简单的轮询,每个服务器根据权重轮流使用,在服务器的处理时间平均分配的情况下这是最流畅和公平的算法.该算法是动态的,对于实 ...

  7. Android基于XMPP Smack Openfire下学习开发IM(一)实现用户注册、登录、修改密码和注销等

    http://blog.csdn.net/h7870181/article/details/8653865 以前学习过用Scoket 建立聊天,简单的建立聊天是没问题的,但如果要实现多人复杂的聊天,后 ...

  8. 耗时任务DefaultEventExecutorGroup 定时任务

    一. 耗时任务 static final EventExecutorGroup group = new DefaultEventExecutorGroup(16); // Tell the pipel ...

  9. mysql慢sql报警系统

    前言:最近有同事反应有的接口响应时间时快时慢,经过排查有的数据层响应时间过长,为了加快定位定位慢sql的准确性,决定简单地搭建一个慢sql报警系统 具体流程如下架构图 第一步:记录日志 每个业务系统都 ...

  10. C++两个类相互包含引用的问题

    在构造自己的类时,有可能会碰到两个类之间的相互引用问题,例如:定义了类A类B,A中使用了B定义的类型,B中也使用了A定义的类型 class A { B b; } class B { A* a; } 请 ...