题面

Bzoj

洛谷

题解

考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治。

具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内,那就把它用并查集并起来。最后对于一个询问,直接用并查集找就好了。

但是因为有撤销操作,所以在并查集合并的时候,我们将需要合并的两个点放进栈中,最后栈序撤销,所以只能考虑按秩合并而不能路径压缩。

#include <map>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::sort; using std::swap;
using std::unique; using std::lower_bound;
using std::map; using std::vector;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 2e5 + 10;
int n, id[3][N], q_num, top, fa[N], siz[N], cnt;
map<int, int> G[N];
struct Edge { int u, v, beg, end; };
struct Node { int x, y; } q[N], stk[N << 2];
vector<Edge> e; int find(int x) { while(fa[x] != x) x = fa[x]; return x; } inline void merge(int x, int y) {
int fx = find(x), fy = find(y);
if(siz[fx] > siz[fy]) swap(fx, fy);
fa[fx] = fy, siz[fy] += siz[fx], stk[++top] = (Node){fx, fy};
} void doit (int l, int r, vector<Edge> E) {
vector<Edge> L, R;
int mid = (l + r) >> 1, tmp = top;
for(vector<Edge>::iterator it = E.begin(); it != E.end(); ++it)
if(it->beg <= l && it->end >= r) merge(it->u, it->v);
else {
if(it->beg <= mid) L.push_back(*it);
if(it->end > mid) R.push_back(*it);
}
if(l == r) puts(find(q[l].x) == find(q[l].y) ? "Y" : "N");
else doit(l, mid, L), doit(mid + 1, r, R);
while(top > tmp) {
int x = stk[top].x, y = stk[top--].y;
fa[x] = x, siz[y] -= siz[x];
}
} int main () {
read(n);
for(int i = 1; i <= n; ++i)
id[1][i] = ++cnt, id[2][i] = ++cnt;
while(true) {
char s[10]; int r1, c1, r2, c2;
scanf("%s", s); if(s[0] == 'E') break;
read(r1), read(c1), read(r2), read(c2);
if(s[0] == 'O') {
G[id[r1][c1]][id[r2][c2]] = G[id[r2][c2]][id[r1][c1]] = e.size();
e.push_back((Edge){id[r1][c1], id[r2][c2], q_num + 1, -1});
} else if(s[0] == 'C') e[G[id[r1][c1]][id[r2][c2]]].end = q_num;
else if(s[0] == 'A') q[++q_num] = (Node){id[r1][c1], id[r2][c2]};
}
for(vector<Edge>::iterator it = e.begin(); it != e.end(); ++it)
if(it->end == -1) it->end = q_num;
for(int i = 1; i <= n + n; ++i) fa[i] = i, siz[i] = 1;
doit(1, q_num, e);
return 0;
}

Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)的更多相关文章

  1. Luogu P4246 [SHOI2008]堵塞的交通(线段树+模拟)

    P4246 [SHOI2008]堵塞的交通 题意 题目描述 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个\(2\)行\(C\)列的矩形 ...

  2. 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)

    题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...

  3. 洛谷P4121 [WC2005]双面棋盘(线段树套并查集)

    传送门 先膜一下大佬->这里 据说这题正解是LCT,然而感觉还是线段树套并查集的更容易理解 我们对于行与行之间用线段树维护,每一行内用并查集暴力枚举 每一行内用并查集暴力枚举连通块这个应该容易理 ...

  4. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)

    LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...

  5. BZOJ1018[SHOI2008]堵塞的交通——线段树

    题目描述 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总 ...

  6. BZOJ.1018.[SHOI2008]堵塞的交通(线段树维护连通性)

    题目链接 只有两行,可能的路径数不多,考虑用线段树维护各种路径的连通性. 每个节点记录luru(left_up->right_up),lurd,ldru,ldrd,luld,rurd,表示这个区 ...

  7. BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树分治+并查集)

    传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #incl ...

  8. LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset

    题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...

  9. 【洛谷P4319】 变化的道路 线段树分治+LCT

    最近学了一下线段树分治,感觉还蛮好用... 如果正常动态维护最大生成树的话用 LCT 就行,但是这里还有时间这一维的限制. 所以,我们就把每条边放到以时间为轴的线段树的节点上,然后写一个可撤销 LCT ...

随机推荐

  1. 《编写高质量代码:改善JavaScript程序的188个建议》学习小记(二)

    建议3:减少全局变量污染 1.把多个全局变量都追加在一个名称空间下,将显著降低与其他应用程序产生冲突的概率,应用程序也会变得更容易阅读. var My = {}; My.name = { " ...

  2. 【BZOJ】2310: ParkII 插头DP

    [题意]给定m*n的整数矩阵,求经过所有点至多一次路径的最大数值和.n<=8,m<=100. [算法]插头DP [题解]最小表示法确实十分通用,处理简单路径问题只需要状态多加一位表示独立插 ...

  3. CSS 实现单边阴影

    box-shadow: 0px -15px 10px -15px #111; 五个值分别为:x y blur spread color 将 spread 设置成 blur 的负值即可 这种只适用于 o ...

  4. wamp中mysql安装时能启动,重启后无法启动的解决办法

    第一次安装wamp之后,所有服务可以正常使用,但是重启之后wamp的图标就变成黄色的了,重装了也这样 查看一下错误日志: 日志显示的错误是这样的: 日志提示可能是3306端口被占用的错误,那来看一下是 ...

  5. 使用IntelliJ IDEA新建maven的javaWeb项目部署,启动访问index,jsp页面

    对于用惯了eclipse的人,idea其实还挺不一样的,也是摸索了很久,看了好多博客,这里就记录一下,以后肯定经常用!,不过使用熟练了,功能确实非常强大,真的牛! 1 新建maven项目,配置好目录结 ...

  6. input 标签禁止输入

    1.鼠标可以点击输入框,但是不能输入 readonly 例如: <input class="layui-input" readonly > 2.鼠标点击输入框出现禁用图 ...

  7. MySQL5.7之多源复制&Nginx中间件(下)【转】

    有生之年系列----MySQL5.7之多源复制&Nginx中间件(下)-wangwenan6-ITPUB博客http://blog.itpub.net/29510932/viewspace-1 ...

  8. MySQL主从复制-指定数据库复制

    在/etc/my.cnf添加需要进行同步的数据库信息 #需要进行同步的数据库 #replicate-do-db=custmgr #replicate-do-db=sdata #replicate-ig ...

  9. C# 所生成项目的处理器架构“MSIL”与引用“Oracle.DataAccess, Version=4.112.3.0, Culture=neutral, PublicKeyToken=89b483f429c47342, processorArchitecture=x86”的处理器架构“x86”不匹配。这种不匹配可能会导致运行时失败。

    这个问题一般都是Oracle.DataAccess的版本不兼容问题造成的. 解决办法: 1.把Oracle.DataAccess.dll文件拿到C盘或D盘的安装文件的地方进行搜索. 2.会出现在pro ...

  10. idea git revert 究竟做了啥

    git里面实现撤销commit 这个据我目前所知,有至少4个途径可以做到 1.git reset 2.git revert 3.git rm –cached 4.git checkout 这个可以参考 ...