LeetCode446. Arithmetic Slices II - Subsequence
A sequence of numbers is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
For example, these are arithmetic sequences:
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic.
1, 1, 2, 5, 7
A zero-indexed array A consisting of N numbers is given. A subsequence slice of that array is any sequence of integers (P0, P1, ..., Pk) such that 0 ≤ P0 < P1 < ... < Pk < N.
A subsequence slice (P0, P1, ..., Pk) of array A is called arithmetic if the sequence A[P0], A[P1], ..., A[Pk-1], A[Pk] is arithmetic. In particular, this means that k ≥ 2.
The function should return the number of arithmetic subsequence slices in the array A.
The input contains N integers. Every integer is in the range of -231 and 231-1 and 0 ≤ N ≤ 1000. The output is guaranteed to be less than 231-1.
Example:
Input: [2, 4, 6, 8, 10] Output: 7 Explanation:
All arithmetic subsequence slices are:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]
分析
又是一个光题目就得看半天的算法题,前面可以直接无视,直接看它给出的例子就知道这题到底要求什么了。看了下解答,方法是利用dp。
最少需要记住两个参数,序列的第一个或者最后一个元素,以及这个序列中的公共差。
f[i][d] denotes the number of arithmetic subsequences that ends with A[i] and its common difference is d.
下一步是寻找状态转移表达式已建立子问题之间的桥梁。试想如果我们现在想要把一个新元素A[i]插入到一个现有的arithmetic sequence中来形成一个新的arithmetic sequence,那么只有在A[i]和原来的sequence中最后一个元素的差等于其公共差的情况下才能形成新的arithmetic sequence。

这里比较难理解的便是 T(i, d) = summation of (1 + T(j, d)) as long as 0 <= j < i && d == A[i] - A[j]. 这个式子,还是用个例子来说明比较好,如果当前的 j 是 3,公差是1的话 :
1,2,3,4
2,3,4
两个可能。3,4因为元素个数少于3个所以不构成arithmetic sequence,现在我们将A[i]=A[5]=5加入以构成新的arithmetic sequence,
1,2,3,4,5
2,3,4,5
3,4,5
多了一个,并不是完全等于之前的T(j, d)。

dp的特性,子问题之间有重复,和分治不同。
代码
public int numberOfArithmeticSlices(int[] A) {
int res = 0;
Map<Integer, Integer>[] map = new Map[A.length];
for (int i = 0; i < A.length; i++) {
map[i] = new HashMap<>(i);
for (int j = 0; j < i; j++) {
long diff = (long)A[i] - A[j];
if (diff <= Integer.MIN_VALUE || diff > Integer.MAX_VALUE) continue;
int d = (int)diff;
int c1 = map[i].getOrDefault(d, 0);
int c2 = map[j].getOrDefault(d, 0);
res += c2;
map[i].put(d, c1 + c2 + 1);
}
}
return res;
}
map数组用来存储中间计算结果T(i, d),数组的index对应i,表示arithmetic sequence以A[i]结束;key是公共距离差d,value是arithmetic sequence的个数,也就是T(i, d)。也就说用了map数组一下子存储了三个基本信息,厉害了。

这题真的好难。
LeetCode446. Arithmetic Slices II - Subsequence的更多相关文章
- Arithmetic Slices II - Subsequence LT446
446. Arithmetic Slices II - Subsequence Hard A sequence of numbers is called arithmetic if it consis ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- LeetCode 446. Arithmetic Slices II - Subsequence
原题链接在这里:https://leetcode.com/problems/arithmetic-slices-ii-subsequence/ 题目: A sequence of numbers is ...
- [Swift]LeetCode446. 等差数列划分 II - 子序列 | Arithmetic Slices II - Subsequence
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- Leetcode: Arithmetic Slices II - Subsequence
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- 446. Arithmetic Slices II - Subsequence
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- 446 Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
详见:https://leetcode.com/problems/arithmetic-slices-ii-subsequence/description/ C++: class Solution { ...
- 第六周 Leetcode 446. Arithmetic Slices II - Subsequence (HARD)
Leetcode443 题意:给一个长度1000内的整数数列,求有多少个等差的子数列. 如 [2,4,6,8,10]有7个等差子数列. 想了一个O(n^2logn)的DP算法 DP[i][j]为 对于 ...
- [LeetCode] Arithmetic Slices 算数切片
A sequence of number is called arithmetic if it consists of at least three elements and if the diffe ...
随机推荐
- 【枚举&数据结构】【P2484】 [SDOI2011]打地鼠
Description 给定一个网格,每个格子上有一个数字.一次操作可以将 \(r~\times~c\) 的一块矩形的数字减去 \(1\).必须保证这个矩形中的数全部为正.每次操作的 \(r\) 和 ...
- opencv 启动摄像头 C++
http://blog.csdn.net/thefutureisour/article/details/7530177 在网上看了许多关于OpenCV启动摄像头的资料,但是,都是基于C语言的,代码又臭 ...
- js 读写 cookie 简单实现
const getItem = key => { let ca = document.cookie.split('; '); for (let i = 0; i < ca.length; ...
- Centos7.2安装tomcat+Myeclipse(遇到的一些问题与总结)+web项目实战
工作环境:centos7.2 PS:没有耐心的同学可以直接跳到后面的安装方法,对于安装方法大多是网上的,我只是做相关收集和总结 给个tomca和Myeclipset折腾的半死,现在做一些总结1.一定要 ...
- samba和nginx服务
samba和nginx服务 1.s配置amba samba的功能: samba是一个网络服务器,用于Linux和Windows之间共享文件. 1.1配置环境 关闭防火墙和selinux systemc ...
- P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱 ...
- Java基础-引用数据类型之集合(Collection)
Java基础-引用数据类型之集合(Collection) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.为什么出现集合类 面向对象语言对事物的体现都是以对象的形式,所以为了方便 ...
- 科学计算三维可视化---Mayavi可视化实例
一:Dragon绘制实例(三维扫描的绘制) 三维扫描主要用于对物体空间外形结构以及色彩进行扫描,用以获得物体表面的空间坐标, 他的主要意义在于能够将实物的立体信息转换为计算机能够直接处理的数据信号,为 ...
- Camera ISO、快门、光圈、曝光这几个概念
转载自知乎:https://www.zhihu.com/question/21427664 种田要知节气,开车要懂离合,任何一样手艺都有行话.虽然我觉得尽量从实际问题说起,尽量不要说的很专业,但有几个 ...
- bzoj千题计划156:bzoj1571: [Usaco2009 Open]滑雪课Ski
http://www.lydsy.com/JudgeOnline/problem.php?id=1571 DP不一定全部全状态转移 贪心的舍去一些不合法的反而更容易转移 在一定能力范围内,肯定滑雪所需 ...