1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 5786  Solved: 2263
[Submit][Status][Discuss]

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

Source

析:  转载:http://blog.csdn.net/popoqqq/article/details/40182169

把一棵树进行以下操作:

1.找到编号最小的叶节点,删除这个节点,然后与这个叶节点相连的点计入序列

2.反复进行1,直到这棵树只剩下两个节点时,退出

比如说这个图(来自度受百科)

最小叶节点为2,删除2,将3计入序列

最小叶节点为4,删除4,将5计入序列

最小叶节点为5,删除5,将1计入序列

最小叶节点为1,删除1,将3计入序列

图中只剩下两个节点,退出

于是得到这棵树的Prufer序列为{3,5,1,3}

这样可以得到一个长度为n-2的序列。很容易证明,树和Prufer序列是一一对应的

Prufer序列显然满足一个性质:一个点若度数为d,则一定在Prufer序列中出现了d-1次

于是这就变成了一个排列组合的问题了

令每个已知度数的节点的度数为di,有n个节点,m个节点未知度数,left=(n-2)-(d1-1)-(d2-1)-...-(dk-1)

已知度数的节点可能的组合方式如下

(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left!

剩余left个位置由未知度数的节点随意填补,方案数为m^left

于是最后有

ans=(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left! * m^left

答案很显然有高精度,为了避免高精度除法我们可以对每个阶乘暴力分解质因数,对指数进行加减操作即可

代码如下:

n = input()
a = [1 for i in range(n-1)]
num = n - 2
cnt = int(0)
for i in range(n):
x = input()
if x == -1:
cnt += 1
continue
num -= x - 1
for j in range(x):
a[j] -= 1 for i in range(num+1):
a[i] -= 1
ans = int(1)
for i in range(n-2, 0, -1):
if a[i] > 0:
for j in range(a[i]):
ans *= i
else:
for j in range(a[i], 0, 1):
ans /= i
for i in range(num):
ans *= cnt
print ans

  

BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)的更多相关文章

  1. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  2. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  3. BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)

    题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...

  4. BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)

    题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...

  5. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  6. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  7. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  8. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  9. BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 题意: Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标 ...

随机推荐

  1. Delegate 改变指向

    import mx.utils.Delegate; nowWordSound.onSoundComplete =Delegate.create(this, playOver); function pl ...

  2. websocket使用

    兼容性介绍 : https://caniuse.com/#search=websockets var websocket = null; //判断当前浏览器是否支持WebSocket if ('Web ...

  3. servlet类第二篇

    1servlet的生命周期是什么? 服务器启动时(web.xml中配置load-on-startup=1,默认为0)或者第一次请求该servlet时,就会初始化一个Servlet对象,也就是会执行初始 ...

  4. etcd ui

    https://github.com/henszey/etcd-browser docker build --build-arg http_proxy=http://109.105.4.17:3128 ...

  5. Hadoop 初始化系统

    hadoop namenode -format 或者 hdfs namenode -format 2.执行hadoop sbin 目录下的 start-dfs.sh start-yarn.sh3.查看 ...

  6. centos7 /etc/profile /etc/bashrc

    在/etc/profile中添加环境变量后,是使用source /etc/profile编译后只能在当前终端生效 重新开启一个终端后,该环境变量失效. 解决方法: 重启系统:reboot,问题解决 环 ...

  7. Bioconductor应用领域之基因芯片

    引用自https://mp.weixin.qq.com/s?__biz=MzU4NjU4ODQ2MQ==&mid=2247484662&idx=1&sn=194668553f9 ...

  8. Android通过DeepLink方式跳转其他App传递参数

    网上对于安卓DeepLink方式跳转传递参数的例子较少,说的也不客观,实践之后发现还是有一些坑.其实为什么要用DeepLink方式跳转,有些是因为引流的原因,他们希望通过网页就能直接跳转到App的界面 ...

  9. 反射, getClass(), 和something.class以及类型类(转)

    原文地址:http://www.cnblogs.com/lianghui66/archive/2012/12/03/2799134.html 所谓反射,可以理解为在运行时期获取对象类型信息的操作.传统 ...

  10. Alberta family's QR code is world's largest corn maze

    BY DARREN WEIR     SEP 10, 2012 IN ODD NEWS Link:http://www.digitaljournal.com/article/332512   Laco ...