原题链接:codeforce 267 Div2 C

问题描述:

给定长度为n的数组a[],从中选择k个长度为m的子数组,要求和最大。

形式描述为:选择$k$个子数组[$l_1$, $r_1$], [$l_2$, $r_2$], ..., [$l_k$l1, $r_k$] (1 ≤ $l_1$ ≤$r_1$ ≤$l_2$ ≤ $r_2$ ≤... ≤$l_k$ ≤ $r_k$ ≤ n; $r_i-r_i+1$), 使得$\sum_{i=1}^{k}\sum_{j=l_i}^{r_i}p_j$

问题分析:

【思路1】先从简单粗暴的方法入手,怎么办?寻找所有的k个长度为m的子数组,然后选择其中和最小的。第一个长度为m的子数组开始位置可能为0...(k-1)*m,然后第二个子数组的下标?第三个子数组下标?太复杂了而且时间复杂度肯定超高,不能忍,换个方法吧。

【思路2】再看一下问题,要求和最大,求最值问题十有八九都是DP问题,试试吧。DP题目子问题怎么定义是关键,然后这东西基本只能靠经验了(嗯,算法导论上就是这么说的)。从后往前考虑,那么对于最后一个元素,只有两种情况,被选中到子数组中或者没有被选到子数组中。如果被选中,那么首先计算最后m个元素的和,剩下的问题就化为从前面长度为n-m的数组中选择k-1组和最大的子数组。如果没选中最后一个,也好办,直接转化为从前面n-1个元素中选择k组和最大的子数组。分析后我们有:

子问题定义:   dp[i][j] = 从前i个元素中选择j个子数组的最大和

状态转移方程:  dp[i][j] = max(dp[i-1][j], dp[i-m][j-1] + sum(a[i-m]...a[i-1]))

初始条件:        dp[0][j] = 0; dp[i][0] = 0; if (i < j * m) dp[i][j] = 0;

AC代码如下:

 #include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>
using namespace std; int main()
{
int n, m, k;
cin >> n >> m >> k; vector<int> v(n, );
for (int i = ; i < n; ++i)
{
cin >> v[i];
} // dp[i][j] = choose j pairs integers from the first i elements
// Then base on the ith is chosen or not, there are two case:
// not choose ith element, the dp[i][j] = dp[i-1][j]
// choose ith element, the dp[i][j] = dp[i-m][j-1] + sum(a[i-1]...a[i-m])
// so dp[i][j] = max(dp[i-1][j], dp[i-m][j-1] + sum(a[i-1]...a[i-m])
// base case: assert (i >= j * m) if not 0 dp[i][j] = 0
// the problem is equal to find dp[n][k] vector<vector<long long> > dp(n+, vector<long long>(k+, )); // base case
for (int i = ; i < n + ; ++i)
{
for (int j = ; j < k + ; ++j)
{
if (i < j * m)
{
dp[i][j] = ;
}
}
} // bottom to up
for (int i = ; i < n + ; ++i)
{
for (int j = ; j < k + ; ++j)
{
if (i >= j * m)
{
long long lastPairSum = accumulate(v.begin() + i - m, v.begin() + i, 0LL);
dp[i][j] = max(dp[i-][j], dp[i-m][j-] + lastPairSum);
} }
} long long ans = dp[n][k];
cout << ans << endl;
return ;
}

注意点:

这道题目很简单的,为什么要记录下来呢,因为我用了int,出现了overflow,想了半天也没想明白到底错在哪里了,脑子真是瓦特啦,记下来以免重蹈覆辙。

【算法30】从数组中选择k组长度为m的子数组,要求其和最小的更多相关文章

  1. 选择问题(选择数组中第K小的数)

    由排序问题可以引申出选择问题,选择问题就是选择并返回数组中第k小的数,如果把数组全部排好序,在返回第k小的数,也能正确返回,但是这无疑做了很多无用功,由上篇博客中提到的快速排序,稍稍修改下就可以以较小 ...

  2. 现在有m组n个有序数组,例如{1,2,3,4},{2,3,4,6},{1,3,5,7},在这些数组中选择第k小的数据,然后返回这个值

    问题描述:现在有m组n个有序数组,例如{1,2,3,4},{2,3,4,6},{1,3,5,7},在这些数组中选择第k小的数据,然后返回这个值 思路:参照两个数组归并的过程,每次选取最小的数据进行比较 ...

  3. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  4. 前端算法题:找出数组中第k大的数字出现多少次

    题目:给定一个一维数组,如[1,2,4,4,3,5],找出数组中第k大的数字出现多少次. 例如:第2大的数是4,出现2次,最后输出 4,2 function getNum(arr, k){ // 数组 ...

  5. 查找数组中第k大的数

    问题:  查找出一给定数组中第k大的数.例如[3,2,7,1,8,9,6,5,4],第1大的数是9,第2大的数是8-- 思考:1. 直接从大到小排序,排好序后,第k大的数就是arr[k-1]. 2. ...

  6. 寻找数组中第K大数

    1.寻找数组中的第二大数 using System; using System.Collections.Generic; using System.Linq; using System.Text; u ...

  7. 一题多解(五) —— topK(数组中第 k 大/小的数)

    根据对称性,第 k 大和第 k 小,在实现上,是一致的,我们就以第 k 小为例,进行说明: 法 1 直接排序(sort(A, A+N)),当使用一般时间复杂度的排序算法时,其时间复杂度为 O(N2) ...

  8. [LeetCode] Kth Largest Element in an Array 数组中第k大的数字

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

  9. 数组中第K小的数字(Google面试题)

    http://ac.jobdu.com/problem.php?pid=1534 题目1534:数组中第K小的数字 时间限制:2 秒 内存限制:128 兆 特殊判题:否 提交:1120 解决:208 ...

随机推荐

  1. 学习C++50条忠告

    1.把C++当成一门新的语言学习: 2.看<Thinking In C++>,不要看<C++变成死相>: 3.看<The C++ Programming Language ...

  2. np.identity()

    二.np.identity()这个函数和之前的区别在于,这个只能创建方阵,也就是N=M 函数的原型:np.identity(n,dtype=None) 参数:n,int型表示的是输出的矩阵的行数和列数 ...

  3. The Last Stand

    The Last Stand https://ac.nowcoder.com/acm/contest/303/L 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语 ...

  4. django复习--学校管理系统用到的知识点梳理

    先看如何引入静态文件 一.引入静态文件,静态文件包括css文件,图片文件,jquery文件等 STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path. ...

  5. mysql的外键知识

    外键的作用 1.用来约束两张表中的字段 2.外键也可以用来实现一对多 我们先举一个这样的例子,让大家对外键有一个基本的认识 当前我们有一个需求就是,需要创建一张表,这张表要包括“姓名”,“年龄”,“工 ...

  6. collections系列之OrderedDict【有序字典】与DefaultDict【默认字典】

    今天来向大家介绍一下collections系列中的OrderedDict和DefaultDict,这两种类均是通过collections来创建的,均是对dict字典加工,所有都继承了dict字典的方法 ...

  7. 用HttpClient发送HTTPS请求报SSLException: Certificate for <域名> doesn't match any of the subject alternative names问题的解决

    最近用server酱-PushBear做消息自动推送,用apache HttpClient做https的get请求,但是代码上到服务器端就报javax.net.ssl.SSLException: Ce ...

  8. ViewPager 带动画的欢迎界面

    一般APP进去之后都会有几张图片来导航,这里就学习怎么在这张图片切换的时候添加切换动画效果 先看布局文件 activity_main.layout <?xml version="1.0 ...

  9. Java 检查异常(checked exception)和未检查异常(unchecked exception)区别理解

    所有异常类型都是 Throwable 类的子类,它包含Exception类和Error类,Exception又包括checked exception和unchecked exception. unch ...

  10. 工作五年以上的 UI 设计师都在干什么?

    30 岁,现在坐标北京,从毕业至今都一直在做设计.目前从业超过了五年,也没打算离开设计这个行业.即便有一天不再从事设计专职的岗位,也仍然会在生活中,或者一些份外的工作中做「设计师」的角色,因为设计已成 ...