原题链接:codeforce 267 Div2 C

问题描述:

给定长度为n的数组a[],从中选择k个长度为m的子数组,要求和最大。

形式描述为:选择$k$个子数组[$l_1$, $r_1$], [$l_2$, $r_2$], ..., [$l_k$l1, $r_k$] (1 ≤ $l_1$ ≤$r_1$ ≤$l_2$ ≤ $r_2$ ≤... ≤$l_k$ ≤ $r_k$ ≤ n; $r_i-r_i+1$), 使得$\sum_{i=1}^{k}\sum_{j=l_i}^{r_i}p_j$

问题分析:

【思路1】先从简单粗暴的方法入手,怎么办?寻找所有的k个长度为m的子数组,然后选择其中和最小的。第一个长度为m的子数组开始位置可能为0...(k-1)*m,然后第二个子数组的下标?第三个子数组下标?太复杂了而且时间复杂度肯定超高,不能忍,换个方法吧。

【思路2】再看一下问题,要求和最大,求最值问题十有八九都是DP问题,试试吧。DP题目子问题怎么定义是关键,然后这东西基本只能靠经验了(嗯,算法导论上就是这么说的)。从后往前考虑,那么对于最后一个元素,只有两种情况,被选中到子数组中或者没有被选到子数组中。如果被选中,那么首先计算最后m个元素的和,剩下的问题就化为从前面长度为n-m的数组中选择k-1组和最大的子数组。如果没选中最后一个,也好办,直接转化为从前面n-1个元素中选择k组和最大的子数组。分析后我们有:

子问题定义:   dp[i][j] = 从前i个元素中选择j个子数组的最大和

状态转移方程:  dp[i][j] = max(dp[i-1][j], dp[i-m][j-1] + sum(a[i-m]...a[i-1]))

初始条件:        dp[0][j] = 0; dp[i][0] = 0; if (i < j * m) dp[i][j] = 0;

AC代码如下:

 #include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>
using namespace std; int main()
{
int n, m, k;
cin >> n >> m >> k; vector<int> v(n, );
for (int i = ; i < n; ++i)
{
cin >> v[i];
} // dp[i][j] = choose j pairs integers from the first i elements
// Then base on the ith is chosen or not, there are two case:
// not choose ith element, the dp[i][j] = dp[i-1][j]
// choose ith element, the dp[i][j] = dp[i-m][j-1] + sum(a[i-1]...a[i-m])
// so dp[i][j] = max(dp[i-1][j], dp[i-m][j-1] + sum(a[i-1]...a[i-m])
// base case: assert (i >= j * m) if not 0 dp[i][j] = 0
// the problem is equal to find dp[n][k] vector<vector<long long> > dp(n+, vector<long long>(k+, )); // base case
for (int i = ; i < n + ; ++i)
{
for (int j = ; j < k + ; ++j)
{
if (i < j * m)
{
dp[i][j] = ;
}
}
} // bottom to up
for (int i = ; i < n + ; ++i)
{
for (int j = ; j < k + ; ++j)
{
if (i >= j * m)
{
long long lastPairSum = accumulate(v.begin() + i - m, v.begin() + i, 0LL);
dp[i][j] = max(dp[i-][j], dp[i-m][j-] + lastPairSum);
} }
} long long ans = dp[n][k];
cout << ans << endl;
return ;
}

注意点:

这道题目很简单的,为什么要记录下来呢,因为我用了int,出现了overflow,想了半天也没想明白到底错在哪里了,脑子真是瓦特啦,记下来以免重蹈覆辙。

【算法30】从数组中选择k组长度为m的子数组,要求其和最小的更多相关文章

  1. 选择问题(选择数组中第K小的数)

    由排序问题可以引申出选择问题,选择问题就是选择并返回数组中第k小的数,如果把数组全部排好序,在返回第k小的数,也能正确返回,但是这无疑做了很多无用功,由上篇博客中提到的快速排序,稍稍修改下就可以以较小 ...

  2. 现在有m组n个有序数组,例如{1,2,3,4},{2,3,4,6},{1,3,5,7},在这些数组中选择第k小的数据,然后返回这个值

    问题描述:现在有m组n个有序数组,例如{1,2,3,4},{2,3,4,6},{1,3,5,7},在这些数组中选择第k小的数据,然后返回这个值 思路:参照两个数组归并的过程,每次选取最小的数据进行比较 ...

  3. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  4. 前端算法题:找出数组中第k大的数字出现多少次

    题目:给定一个一维数组,如[1,2,4,4,3,5],找出数组中第k大的数字出现多少次. 例如:第2大的数是4,出现2次,最后输出 4,2 function getNum(arr, k){ // 数组 ...

  5. 查找数组中第k大的数

    问题:  查找出一给定数组中第k大的数.例如[3,2,7,1,8,9,6,5,4],第1大的数是9,第2大的数是8-- 思考:1. 直接从大到小排序,排好序后,第k大的数就是arr[k-1]. 2. ...

  6. 寻找数组中第K大数

    1.寻找数组中的第二大数 using System; using System.Collections.Generic; using System.Linq; using System.Text; u ...

  7. 一题多解(五) —— topK(数组中第 k 大/小的数)

    根据对称性,第 k 大和第 k 小,在实现上,是一致的,我们就以第 k 小为例,进行说明: 法 1 直接排序(sort(A, A+N)),当使用一般时间复杂度的排序算法时,其时间复杂度为 O(N2) ...

  8. [LeetCode] Kth Largest Element in an Array 数组中第k大的数字

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

  9. 数组中第K小的数字(Google面试题)

    http://ac.jobdu.com/problem.php?pid=1534 题目1534:数组中第K小的数字 时间限制:2 秒 内存限制:128 兆 特殊判题:否 提交:1120 解决:208 ...

随机推荐

  1. mysql与redis的区别与联系

    1.mysql是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢. redis是NOSQL,即非关系型数据库,也是缓存数据库,即将数据存储在缓存中,缓存的读取速度快,能够大大的提 ...

  2. Android笔记:RelativeLayout

    RelativeLayout 又称作相对布局,也是一种非常常用的布局.和 LinearLayout 的排列规则不同,RelativeLayout 显得更加随意一些,它可以通过相对定位的方式让控件出现在 ...

  3. 【校招面试 之 C/C++】第5题 C++各种构造函数的写法

    构造函数 ,是一种特殊的方法 .主要用来在创建对象时初始化对象, 即为对象成员变量赋初始值,总与new运算符一起使用在创建对象的语句中 .特别的一个类可以有多个构造函数 ,可根据其参数个数的不同或参数 ...

  4. 14- Servlet.service() for servlet [mvc-dispatcher] in context with path [/collegeservice] threw exception [Request processing failed; nested exception is java.lang.NullPointerException] with root caus

    有的service没有依赖注入:

  5. VideoView的全屏问题

    package com.bi.standardcompuse.app.widgets; import android.content.Context;import android.util.Attri ...

  6. 测试rar/bz2/tar.gz/gz压缩文档完整性

    #gz文件gzip -t *.gz#bz2文件tar jtvf archive.tar.bz2#tar.gz文件tar jtvf archive.tar.gz#rar文件unrar t 1.rar

  7. Region特征算子与形态学运算——第3讲

      问题提出:求下图中楔形缺口到圆心的最短距离. [涉及知识点讲解] 一.Region特征算子 在图形窗口中用鼠标单击选中某个Region,然后点击菜单栏的“打开特征检测”图标,就可以看到当前Regi ...

  8. bootstrap下modal模态框中webuploader控件按钮异常(无法点击)问题解决办法【转】

    http://bbs.csdn.net/topics/391917552 具体如下:   $(function () {         var _$modal = $('#MyModal');    ...

  9. 《计算机网络》谢希仁(第7版) 第四章 c语言http://c.biancheng.net/cpp/html/3137.html

    第四章 网络层 电信网使用面向连接的通信方式,使电信网络能够向用户提供可靠传输的服务. 互联网设计思路:网络层向上只提供简单灵活的.无连接的.尽最大努力交付的数据报(分组)服务. 网络层不提供可靠传输 ...

  10. Codeforces 631C. Report 模拟

    C. Report time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...