P4128 [SHOI2006]有色图

题目描述

如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图。如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得两张图对应的边的颜色是一样的,我们就称这两张有色图是同构的。以下两张图就是同构的,因为假如你把第一张图的顶点\((1,2,3,4)\)置换成第二张图的\((4,3,2,1)\),就会发现它们是一样的。

你的任务是,对于计算所有顶点数为\(n\),颜色种类不超过\(m\)的图,最多有几张是两两不同构的图。由于最后的答案会很大,你只要输出结论模\(p\)的余数就可以了(\(p\)是一个质数)

输入输出格式

输入格式:

输入文件只有一行,由三个正整数\(n,m,p\)组成,他们满足\(1≤n≤53\),\(1≤m≤1000\),\(n<p≤10^9\)

输出格式:

即总数模\(p\)后的余数


我们发现\(polya\)处理的是点的置换,现在要处理边的,怎么办呢?

其实是一样的,我们发现每个点的置换都可以对应一个边的置换,边的置换同样构成了一个群,注意这个群的大小和点的置换组成的群的大小是一样的。

然后我们枚举本质不同的点的置换,这个本质不同是按轮换大小的集合定义的,相当于对\(n\)进行和式拆分,相当于\(n=L_1+L_2+\dots+L_p\),\(L\)是每个轮换的大小,这个状态量是比较小的。

注意搜的时候为了避免重复,需要\(L_1\le L_2\le \dots L_p\)这样搜

这时候就可以通过点的置换求出边的置换的轮换大小的信息了。

分类讨论

  • 当两个点处于两个不同轮换\(L_i\)和\(L_j\)中时,产生的边的轮换的大小为$\frac{L_i,L_j}{lcm(L_i,L_j)}=\gcd(i,j) $,就是考虑两个点一起转,然后要转公倍数那么长才回来
  • 当两个点处于同一轮换\(L_i\)中时
    • 当\(L_i\)为奇数,轮换个数为\(\frac{L_i*(L_i-1)}{2*L_i}=\frac{L_i-1}{2}\),每个轮换长度为\(L_i\)
    • 当\(L_i\)为偶数,轮换个数为\(\frac{\frac{L_i(L_i-1)}{2}-\frac{L_i}{2}}{L}+1=\frac{L_i}{2}\),这里有一个轮换长度为\(\frac{L_i}{2}\),是相差长度等于\(\frac{L_2}{2}\)的点组成的边所在的集合。

然后统计所有轮换的贡献\(C=\sum\lfloor\frac{L_1}{2}\rfloor+\sum\sum \gcd(L_i,L_j)\)

再统计一下枚举的\(L\)的总情况,为\(D=\frac{n!}{\prod_{i=1}^pL_i\prod_{i=1}^kB_i}\),其中\(B_i\)为\(\sum_{j=1}^p[L_j=i]\),这点除\(L_i\)是每种情况都是一个圆排列,除\(B_i\)是每个同样大小的圆排列是无标号的。

答案是\(\frac{\sum Dm^C}{n!}\)


#include <cstdio>
int ans,L[60],fac[60],n,m,mod,cnt;
#define mul(a,b) (1ll*(a)*(b)%mod)
#define add(a,b) ((a+b)%mod)
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
void cal()
{
int C=0,S=1;
for(int i=1;i<=cnt;i++)
C=add(C,L[i]/2);
for(int i=1;i<=cnt;i++)
for(int j=i+1;j<=cnt;j++)
C=add(C,gcd(L[i],L[j]));
int B=1;
for(int i=1;i<=cnt;i++)
{
if(L[i]!=L[i-1])
{
S=mul(S,fac[B]);
B=0;
}
++B;
S=mul(S,L[i]);
}
S=mul(S,fac[B]);
S=qp(S,mod-2);
C=qp(m,C);
ans=add(ans,mul(S,C));
}
void dfs(int res,int lim)
{
if(!res) cal();
for(int i=lim;i<=res;i++)
{
L[++cnt]=i;
dfs(res-i,i);
--cnt;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&mod);
fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=mul(fac[i-1],i);
dfs(n,1);
printf("%d\n",ans);
return 0;
}

2018.12.22

洛谷 P4128 [SHOI2006]有色图 解题报告的更多相关文章

  1. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  2. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  3. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  4. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  5. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  6. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

  7. 洛谷 P1272 重建道路 解题报告

    P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...

  8. 洛谷 [HNOI2014]道路堵塞 解题报告

    [HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...

  9. 洛谷 P1452 Beauty Contest 解题报告

    P1452 Beauty Contest 题意 求平面\(n(\le 50000)\)个点的最远点对 收获了一堆计算几何的卡点.. 凸包如果不保留共线的点,在加入上凸壳时搞一个相对栈顶,以免把\(n\ ...

随机推荐

  1. 教你如何编写、保存与运行 Python 程序

    第一步 接下来我们将看见如何在 Python 中运行一个传统的“Hello World”程序.Python教程本章将会教你如何编写.保存与运行 Python 程序. 通过 Python 来运行的你的程 ...

  2. elementUI el-select 多选情况下包含全部选项,及获得选中项的label

    <template> <div> <span style="margin-left:30px;font-weight:bolder;">教练: ...

  3. phpcms 容许英文目录有空格

    在PHPCMS添加栏目里面,有个选项是 英文目录,这里目录可以用作伪静态功能.这么英文不能有空格等特殊字符.但是如果页面中需要引用包含空格的字符呢,例如,关于我们页面,我要显示英文about us.那 ...

  4. 打包应用和构建Docker镜像(docker在windows上)

    在构建Docker时编译应用 一般有两种方法在构建镜像时进行打包应用.第一种方法就是使用基本的镜像,该镜像包括应用平台和构建工具,因此在Dockerfile中,复制源代码到镜像中并在构建镜像时编译ap ...

  5. [Hanani]高数相关知识记录

    分部积分 \(\int uv'{\rm d}x=uv-\int u'v{\rm d}x\)

  6. Workbook对象的方法总结(一)

    import openpyxlwb=openpyxl.Workbook()print('1.添加前所有工作簿的名称是:',wb.get_sheet_names())wb.create_sheet('F ...

  7. SQL面经汇总

    转载链接:https://www.nowcoder.com/discuss/95812 目前的打算是还要写一个假设检验的汇总和机器学习的汇总. 之前写的概率论汇总: https://www.nowco ...

  8. cd命令详解

    基础命令学习目录首页 cd 进入用户主目录: cd ~ 进入用户主目录: cd - 返回进入此目录之前所在的目录: cd .. 返回上级目录(若当前目录为“/“,则执行完后还在“/":&qu ...

  9. Daily Scrum 11.18

    今日完成任务: 1.在提问问题的时候为问题创建索引 2.解决了修改个人资料后刷新没有更新的问题 3.初步加入了采纳功能(没完善UI设计) 遇到困难:创建索引之后,跳转到主页,需要重新登录,找了半天不知 ...

  10. java 第一次实验报告

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计 班级:1353  姓名:黎静  学号:20135338 成绩:             指导教师:娄嘉鹏  ...