题目链接

CSU1911

题解

FWT模板题

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 530005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + c - 48; c = getchar();}
return flag ? out : -out;
}
LL A[maxn],B[maxn];
void fwt(LL* a,int n,int f){
for (int i = 1; i < n; i <<= 1)
for (int j = 0; j < n; j += (i << 1))
for (int k = 0; k < i; k++)
a[j + k + i] += a[j + k] * f;
}
int main(){
int T = read();
for (int C = 1; C <= T; C++){
printf("Case #%d:\n",C);
int n = read(),m = read(),deg = 1;
cls(A,0); cls(B,0);
while (deg <= (1 << m)) deg <<= 1;
REP(i,n) A[RD()]++;
REP(i,n) B[RD()]++;
fwt(A,deg,1); fwt(B,deg,1);
for (int i = 0; i < deg; i++) A[i] *= B[i];
fwt(A,deg,-1);
int Q = read();
while (Q--) printf("%lld\n",A[RD()]);
}
return 0;
}

CSU1911 Card Game 【FWT】的更多相关文章

  1. LOJ2269 [SDOI2017] 切树游戏 【FWT】【动态DP】【树链剖分】【线段树】

    题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FW ...

  2. hdu6057 Kanade's convolution 【FWT】

    题目链接 hdu6057 题意 给出序列\(A[0...2^{m} - 1]\)和\(B[0...2^{m} - 1]\),求所有 \[C[k] = \sum\limits_{i \; and \; ...

  3. BZOJ4589 Hard Nim 【FWT】

    题目链接 BZOJ4589 题解 FWT 模板题 #include<algorithm> #include<iostream> #include<cstdlib> ...

  4. [JZOJ6088] [BZOJ5376] [loj #2463]【2018集训队互测Day 1】完美的旅行【线性递推】【多项式】【FWT】

    Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记 ...

  5. [CSU1911]Card Game(FWT)

    [vjudge-CSU1911] FWT_or #include<cstring> #include<iostream> #include<algorithm> # ...

  6. 【杂题】[AGC034F] RNG and XOR【集合幂级数】【FWT】【DP】

    Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v ...

  7. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  8. CF1119H-Triple【FWT】

    正题 题目链接:https://www.luogu.com.cn/problem/CF1119H 题目大意 \(n\)个可重集,第\(i\)个里有\(x\)个\(a_i\),\(y\)个\(b_i\) ...

  9. bzoj4589-Hard Nim【FWT】

    正题 题目链接:https://darkbzoj.tk/problem/4589 题目大意 求有多少个长度为\(n\)的数列满足它们都是不大于\(m\)的质数且异或和为\(0\). 解题思路 两个初始 ...

随机推荐

  1. GodMode | Windows上帝模式

    最近在网上学习到了一些Windows的隐藏功能,今天我就来说说GodMode模式吧. 借鉴:https://jingyan.baidu.com/article/90bc8fc853c38bf65264 ...

  2. OpenFastPath(1):快平面接口是否支持多ip

    1.配置环境 fp0接口上配置两个IP地址: fp0       Link encap:Ethernet  HWaddr 00:0c:29:30:38:db inet addr:192.168.56. ...

  3. mysql实现oracle sequence方案

    转自: http://blog.csdn.net/javaGirlOne/article/details/47256183 背景:先总结一下MYSQL 自增长与ORACLE 序列的区别: 自增长只能用 ...

  4. Django_rest_framework_版本(待验证)

    简介 API版本控制可以用来在不同的客户端使用不同的行为.REST框架提供了大量不同的版本设计. 版本控制是由传入的客户端请求决定的,并且可能基于请求URL,或者基于请求头. 有许多有效的方法达到版本 ...

  5. jdbc连接获取表名称

    1,Class.forName可以替换为mysql之类其他的数据库驱动 public Connection connect(String url,String username,String pw, ...

  6. [BUAA_SE_2017]结对项目-数独程序扩展

    结对项目-数独程序扩展 Runnable on x64 Only sudoku17.txt 须放置在可执行文件同目录中,可移步以下链接进行下载 Core-Github项目地址 GUI-Github项目 ...

  7. Hive问题

    今天一直遇到一个问题: 在查询最热10个关键词时候总是报错,下图为报错最下面 一直关注着failed的内容,头疼了一天.........  结果实验室老哥给指出问题,是yarnException报错, ...

  8. Task 6.2站立会议三

    今天我完成了软件的主要聊天界面的视频通话和语音通话的部分功能,过程中遇到很多不会的知识.因为使用的是C#,虽然很容易上手但是还会存在很多不懂得内容.

  9. bata3

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  10. 为什么使彩色图变灰RGB的权重会固定(R:0.299 G:0.587 B:0.114)?

    人眼对绿色的敏感度最高,对红色的敏感度次之,对蓝色的敏感度最低,因此使用不同的权重将得到比较合理的灰度图像.根据实验和理论推导得出以下数值 R: 0.299. G:  0.587. B: 0.114.