MT【149】和式变形
(2018浙江省赛14题)
将$2n(n\ge2)$个不同的整数分成两组$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n$.
证明:$\sum\limits_{1\le i\le n;1\le j\le n}|a_i-b_j|-\sum\limits_{1\le i<j\le n}{\left(|a_j-a_i|+|b_j-b_i|\right)}\ge n$
$\textbf{证明:}$不妨设$a_1<a_2<\cdots<a_n;b_1<b_2<\cdots<b_n$
$$\begin{align*}
\sum\limits_{1\le i\le n;1\le j\le n}|a_i-b_j|
&=\sum\limits_{1\le i<j\le n}{\left(|a_i-b_j|+|a_j-b_i|\right)}+\sum\limits_{i=j}|a_i-b_j| \\
&\ge\sum\limits_{1\le i<j\le n}{\left(|a_i-b_j|+|a_j-b_i|\right)}+n\\
&\ge\sum\limits_{1\le i<j\le n}{\left(b_j-a_i+a_j-b_i\right)}+n\\
&=\sum\limits_{1\le i<j\le n}{\left(|a_j-a_i|+|b_j-b_i|\right)}+n\\
\end{align*}$$
MT【149】和式变形的更多相关文章
- MT【264】分式变形
已知$x,y>0,\dfrac{1}{x}+\dfrac{2}{y}=1$,求$\dfrac{1}{x+1}+\dfrac{2}{y+1}$的最大值____ 解答:令$a=\dfrac{1}{x ...
- MT【14】最大最小问题变形
解答: 评:这类最大最小问题有几何方法和代数方法两种解法.
- MT【194】又见和式变换
(2007浙江省赛B卷最后一题)设$\sum\limits_{i=1}^{n}{x_i}=1,x_i>0,$求证:$n\sum\limits_{i=1}^n{x_i^2}-\sum\limits ...
- MT【176】两两乘积
求$1,2\cdots,n$两两乘积的平均值____ 解答:$\dfrac{1}{C_n^2}\sum\limits_{1\le i<j\le n}{ij}=\dfrac{1}{n(n-1)}( ...
- MT【142】Bachet 问题,进位制
问题: 满足下面两种限制条件下要想称出40以内的任何整数重量,最少要几个砝码: i)如果砝码只能在天平的某一边; ii)如果砝码可以放在天平的两边. 提示:对于 i)先证明如下事实: \[\textb ...
- CSS3变形记(上):千变万化的Div
传统上,css就是用来对网页进行布局和渲染网页样式的.然而,css3的出现彻底打破了这一格局.了解过css3的人都知道,css3不但可以对网页进行布局和渲染样式,还可以绘制一些图形.对元素进行2D和3 ...
- CSS3与页面布局学习总结(六)——CSS3新特性(阴影、动画、渐变、变形、伪元素等)
CSS3在CSS2.1的基础上新增加了许多属性,这里选择了较常用的一些功能与大家分享,帮助文档中有很详细的描述,可以在本文的示例中获得帮助文档. 一.阴影 1.1.文字阴影 text-shadow&l ...
- Asp.net 设置GridView自适应列宽不变形
动态绑定的GridView由于列数不固定,而列又太多,这样设置GridView固定宽度就不能满足需求了.为此整理了两种方法来达到GridView自适应列宽不变形的效果. //在GridView的行数据 ...
- css3中变形函数(同样是对元素来说的)和元素通过改变自身属性达到动画效果
/*对元素进行改变(移动.变形.伸缩.扭曲)*/ .wrapper{ margin:100px 100px auto auto; width:300px; height:200px; border:2 ...
随机推荐
- AssetBundle压缩/内部结构/下载和加载
一.AssetBundle的压缩方式 Unity支持三种AssetBundle打包的压缩方式:LZMA, LZ4, 以及不压缩. 1.LZMA压缩方式 是一种默认的压缩形式,这种标准压缩格 ...
- 【树莓派】crontab的两个问题
1,/var/log下面,没有cron.log日志 root@raspberrypi:/# nano /etc/rsyslog.conf …… …… ############### #### RULE ...
- [文章存档]如何检测 Azure Web 应用沙盒环境文件系统存储量
链接:https://docs.azure.cn/zh-cn/articles/azure-operations-guide/app-service-web/aog-app-service-web-h ...
- wc命令详解
基础命令学习目录首页 原文链接:http://www.cnblogs.com/peida/archive/2012/12/18/2822758.html Linux系统中的wc(Word Count) ...
- tensorflow enqueue_many传入多个值的列表传入异常问题————Shape () must have rank at least 1
tf 的队列操作enqueue_many传入的值是列表,但是放入[]列表抛异常 File "C:\Users\lihongjie\AppData\Local\Programs\Python\ ...
- servlet 和 threadlocal 与 web容器(理解threadlocal)
同步机制采用了“以时间换空间”的方式,提供一份变量,让不同的线程排队访问.而ThreadLocal采用了“以空间换时间”的方式,为每一个线程都提供了一份变量的副本,从而实现同时访问而互不影响. htt ...
- js循环复制一个div
<html> <head> <title>Test of cloneNode Method</title> <script type=" ...
- 第三次实验报告 敏捷开发与XP实践
一. 实验内容 (一)敏捷开发与XP 摘要:一项实践在XP环境中成功使用的依据通过XP的法则呈现,包括:快速反馈.假设简单性.递增更改.提倡更改.优质工作.XP软件开发的基石是XP的活动,包括:编码 ...
- 第二阶段Sprint冲刺会议9
进展:查看有关“共享平台”的资料,看如何实现上传下载功能,并尝试编码,没有成功.
- 软工实践-Beta 冲刺 (5/7)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...