【LG3247】[HNOI2016]最小公倍数

题面

洛谷

题解

50pts

因为拼凑起来的部分分比较多,所以就放一起了。

以下设询问的\(a,b\)为\(A,B\),

复杂度\(O(nm)\)的:将所有\(a\leq A,b\leq B\)的边两端,用并查集并起来,再看一看等于\(A,B\)的是否有端点在集合中即可。

一条链的:拿线段树之类的数据结构维护一下即可。

\(a\)等于\(0\)的:将边的和询问按照\(b\)排序,用\(two\;pointers\)扫一遍丢到并查集中即可。

100pts

首先考虑暴力,每次询问暴力求出所有\(\leq a, \leq b\)的边,然后判断判断两点是否联通,并且联通块内最大值是否合法就可以了。

接下来的\(A\)和\(B\)还是是询问的\(a, b\)。

将所有的边按照\(a\)排序并分块,将所有的询问按照\(b\)排序。

设第\(i\)块的区间是\([l_i, r_i]\),找出所有的\(A \in [a_{l_i}, a_{r_i})\)的询问,然后一个一个处理。

对于第\(j\)个询问,有两种边可以产生贡献,一种是在\([1, i)\)的\(b \leq B_j\)的边,这种边可以用一个指针维护。

还有一种是在第\(i\)块的\(a \leq A_j\),\(b \leq B_j\)的边,这种边最多只有块的大小条,可以暴力加边。

因为每一次加了第二种边之后要撤销这些操作,所以要写一个支持撤销的并查集。

然后,当块的大小为\(\sqrt{m\log_2n}\)时据说最快。

(感谢\(xgzc\)友情提供)

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-')
w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
} const int MAX_N = 2e5 + 5;
struct Edge { int u, v, a, b; } e[MAX_N];
struct Query { int u, v, a, b, id; } q[MAX_N], p[MAX_N];
struct Node { int u, v, a, b, s; } stk[MAX_N];
bool cmp1(const Edge &l, const Edge &r) { return l.a == r.a ? l.b < r.b : l.a < r.a; }
bool cmp2(const Edge &l, const Edge &r) { return l.b == r.b ? l.a < r.a : l.b < r.b; }
bool cmp3(const Query &l, const Query &r) { return l.b == r.b ? l.a < r.a : l.b < r.b; }
int N, M, Q, top, ans[MAX_N], fa[MAX_N], A[MAX_N], B[MAX_N], size[MAX_N];
int getf(int x) { return fa[x] == x ? x : getf(fa[x]); }
void merge(int x, int y, int a, int b) {
x = getf(x), y = getf(y);
if (size[x] > size[y]) swap(x, y);
stk[++top] = (Node){x, y, A[y], B[y], size[y]};
if (x != y)
fa[x] = y, size[y] += size[x], A[y] = max(A[x], A[y]), B[y] = max(B[x], B[y]);
A[y] = max(A[y], a);
B[y] = max(B[y], b);
} int main() {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi(), M = gi();
for (int i = 1; i <= M; i++) e[i] = (Edge){gi(), gi(), gi(), gi()};
Q = gi();
for (int i = 1; i <= Q; i++) q[i] = (Query){gi(), gi(), gi(), gi(), i};
sort(&e[1], &e[M + 1], cmp1);
sort(&q[1], &q[Q + 1], cmp3);
for (int i = 1, LEN = sqrt(M * log2(N)); i <= M; i += LEN) {
for (int j = 1; j <= N; j++) size[fa[j] = j] = 1, A[j] = B[j] = -1;
int tot = 0;
for (int j = 1; j <= Q; j++)
if (e[i].a <= q[j].a && (i + LEN > M || q[j].a < e[i + LEN].a))
p[++tot] = q[j];
if (!tot) continue;
sort(&e[1], &e[i], cmp2);
for (int j = 1, k = 1; j <= tot; j++) {
while (k < i && e[k].b <= p[j].b) merge(e[k].u, e[k].v, e[k].a, e[k].b), ++k;
top = 0;
for (int l = i; l < i + LEN && l <= M; l++)
if (e[l].a <= p[j].a && e[l].b <= p[j].b)
merge(e[l].u, e[l].v, e[l].a, e[l].b);
int x = getf(p[j].u), y = getf(p[j].v);
ans[p[j].id] = (x == y && A[x] == p[j].a && B[x] == p[j].b);
while (top) {
int x = stk[top].u, y = stk[top].v;
fa[x] = x;
A[y] = stk[top].a, B[y] = stk[top].b, size[y] = stk[top].s;
--top;
}
}
}
for (int i = 1; i <= Q; i++) puts(ans[i] ? "Yes" : "No");
return 0;
}

【LG3247】[HNOI2016]最小公倍数的更多相关文章

  1. BZOJ 4537: [Hnoi2016]最小公倍数 [偏序关系 分块]

    4537: [Hnoi2016]最小公倍数 题意:一张边权无向图,多组询问u和v之间有没有一条a最大为a',b最大为b'的路径(不一定是简单路径) 首先想到暴力做法,题目要求就是判断u和v连通,并查集 ...

  2. [BZOJ4537][HNOI2016]最小公倍数(分块+并查集)

    4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1687  Solved: 607[Submit][Stat ...

  3. [BZOJ4537][Hnoi2016]最小公倍数 奇怪的分块+可撤销并查集

    4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1474  Solved: 521[Submit][Stat ...

  4. 【BZOJ4537】[Hnoi2016]最小公倍数 分块

    [BZOJ4537][Hnoi2016]最小公倍数 Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在 ...

  5. 4537: [Hnoi2016]最小公倍数

    Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...

  6. bzoj 4537 HNOI2016 最小公倍数

    Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,-,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...

  7. [HNOI2016]最小公倍数

    题目描述 给定一张N个顶点M条边的无向图(顶点编号为1,2,...,n),每条边上带有权值.所有权值都可以分解成2a∗3b2^a*3^b2a∗3b 的形式. 现在有q个询问,每次询问给定四个参数u.v ...

  8. 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]

    洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...

  9. [HNOI2016]最小公倍数 (可回退并查集,回滚莫队)

    题面 题目链接 题目描述 给定一张 N N N 个顶点 M M M 条边的无向图(顶点编号为 1 , 2 , - , n 1,2,\ldots,n 1,2,-,n),每条边上带有权值.所有权值都可以分 ...

随机推荐

  1. 固定UIScrollView滑动的方向

    固定UIScrollView滑动的方向 一般而言,我们通过这两个参数CGRectMake以及contentSize就可以自动的让UIScrollView只往一个方向滚动.但我遇到过非常奇葩的情况,那就 ...

  2. Python学习---xml文件的解析[beautifulsoup4模块学习]

    1.1. 安装beautifulsoup4 pip install beautifulsoup4 [更多参考]https://blog.csdn.net/sunhuaqiang1/article/de ...

  3. Linux 系统必须掌握的文件_【all】

    0.Linux 系统文件的详解 1.Linux 系统的网络配置文件 2.Linux 系统的DNS配置文件 3.Linux 系统的IP与域名解析文件[局域网的DNS] 4.Linux 系统的主机别名文件 ...

  4. PSR规范学习笔记

    PSR已经经历了5次变革,如今PSR4就是最新的标准,但是还是有必要了解下5个版本的内容的,于是去php-fig网站看了下英文原版: 大概看了遍,发现这规范很多的必须很多时候只是建议,但是PHP解析器 ...

  5. Composer 的简介、安装及使用

    Composer的简介 简单说,Composer 就是一个安装包管理工具,服务于 PHP 生态系统.它包括了两个部分:Composer 和 Packagist. Composer Composer 是 ...

  6. Linux配置自动发送邮件

    需要的工具:sendEmail 和 linux自带的定时工具:crontab 1.sendEmail的使用: 具体参数解释: -f zhangshibo706@163.com 发件人邮箱 -t 453 ...

  7. CSS学习摘要-盒子模型

    注:全文摘要自网络开发者网站,当然间隔也会整理一些思路和格式排版添加进去. CSS框模型(译者注:也被称为"盒模型")是网页布局的基础 --每个元素被表示为一个矩形的方框,框的内容 ...

  8. fun()可拆分赋值 fun()可以拆, 变成 fun 和 括号, fun 可以赋值

    2. 函数名可以赋值给其他变量   --->   就是 func()可以拆 def fun (): print("哈哈") a = fun # 拆分 fun()的    fu ...

  9. Alpha 冲刺报告(9/10)

    Alpha 冲刺报告(9/10) 队名:洛基小队 峻雄(组长) 已完成:角色属性功能的测试版 明日计划:准备α版本的ppt 剩余任务:尽量完成角色属性功能 困难:缺乏编程经验,很难自己独立完成编写,只 ...

  10. 原生js实现一个DIV的碰撞反弹运动,并且添加重力效果

    继上一篇... 原生js实现一个DIV的碰撞反弹运动,并且添加重力效果 关键在于边界检测,以及乘以的系数问题,实现代码并不难,如下: <!DOCTYPE html> <html la ...