基于python的数学建模---非线性规划
- 凸函数的非线性规划

minimize 求解的是局部最优解
简单的函数,无所谓 复杂的函数 初始值的设定很重要
scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds= None,constaints=() , tol= None,Callback= None, options=None)
fun:求最小值的目标函数
args:常数值
constraints :约束条件
method:求极值方法,一 般默认。
xO:变量的初始猜测值,注意minimize是局部最优
- instance1
计算1/x + x 的最小值
from scipy.optimize import minimize
import numpy as np def fun(args):
a = args
v = lambda x: a / x[0] + x[0]
return v if __name__ == '__main__':
args = (1,) #使用元组
x0 = np.asanyarray((2,))
res = minimize(fun(args), x0, method='SLSQP')
print(res.fun)
print(res.success)
print(res.x)
2.0000000815356342
True
[1.00028559]
- instance2
计算(2+x1)/(1+x2)−3x1+4x3的最小值,其中x1、x2、x3范围在0.1 到 0.9 之间
from scipy.optimize import minimize
import numpy as np def fun(args):
a, b, c, d = args
v = lambda x: (a + x[0]) / (b + x[1]) - c * x[0] + d * x[2]
return v def con(args):
# 0.1 0.9 0.1 0.9
x1min, x1max, x2min, x2max, x3min, x3max = args
# eq 等式等于零 ineq 等式大于零
# x1 - 0.1 > 0
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x1min},
# 0.9 - x1 > 0 这样就将x 限制在0.1 ~ 0.9 之中
{'type': 'ineq', 'fun': lambda x: -x[0] + x1max},
{'type': 'ineq', 'fun': lambda x: x[1] - x2min},
{'type': 'ineq', 'fun': lambda x: -x[1] + x2max},
{'type': 'ineq', 'fun': lambda x: x[2] - x3min},
{'type': 'ineq', 'fun': lambda x: -x[2] + x3max})
return cons if __name__ == '__main__':
args = (2, 1, 3, 4,)
args1 = (0.1, 0.9, 0.1, 0.9, 0.1, 0.9,)
cons = con(args1) # 初始猜想值 要设的好
x0 = np.asarray((0.5, 0.5, 0.5,))
res = minimize(fun(args), x0, method='SLSQP', constraints=cons)
print(res.fun)
print(res.success)
print(res.x)
-0.773684210526435
True
[0.9 0.9 0.1]
基于python的数学建模---非线性规划的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-12.非线性规划
非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法, ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-16.最短路径算法
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...
- Python小白的数学建模课-15.图论基本概念
图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...
- Python小白的数学建模课-19.网络流优化问题
流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容 ...
- Python小白的数学建模课-17.条件最短路径
条件最短路径问题,指带有约束条件.限制条件的最短路径问题.例如: 顶点约束,包括必经点或禁止点的限制: 边的约束,包括必经路段.禁行路段和单向路段:无权路径长度的限制,如要求经过几步或不超过几步到达终 ...
- Python小白的数学建模课-18.最小生成树问题
最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现. 路线设计.道路规划.官网布局.公交路线.网络设计,都可以转化为最小生成树问题,如要求总线路长度最短.材料最少.成本 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
随机推荐
- Typora 最后免费版本也不能用了?简单一招搞定
作者:小牛呼噜噜 | https://xiaoniuhululu.com 计算机内功.JAVA底层.面试相关资料等更多精彩文章在公众号「小牛呼噜噜 」 Typora是一款优秀的 Markdown 编辑 ...
- KingbaseES R3 集群一键修改集群用户密码案例
案例说明: 在KingbaseES R3集群的最新版本中增加了kingbase_monitor.sh一键修改集群用户密码的功能,本案例是对此功能的测试. kingbaseES R3集群一键修改密码说明 ...
- JS中如何删除某个父元素下的所有子元素?
JS中如何删除某个父元素下的所有子元素?这里我介绍几种方法: 1.通过元素的 innerHTML 属性来删除 这种方式我觉得是最有方便的,直接找到你想要的父元素,直接令其 element.innerH ...
- 跨语言调用C#代码的新方式-DllExport
简介 上一篇文章使用C#编写一个.NET分析器文章发布以后,很多小伙伴都对最新的NativeAOT函数导出比较感兴趣,今天故写一篇短文来介绍一下如何使用它. 在以前,如果有其他语言需要调用C#编写的库 ...
- Exchange备份和日志清除
最近新部署Exchange 2019,虽然变化不大,但是也遇到了一些小问题.随着深入研究,就能发现一些以前被忽视的点.Exchange完成备份后,数据库日志并没有被清除,依然存在.https://ww ...
- 接入Twitter和Facebook分享踩坑记录
准备工作 1.首先需要在HTML的head添加下述meta标签内容,在分享时,Twitter和Facebook会爬取该网站页面的meta内容,然后生成分享卡片. 2.按照下述配置完成后,需要把内容发布 ...
- 【COS生态建设】开发者有奖调研,等你来参与!
为了更好的赋能开发者,为大家提供更好的开源应用,我们诚挚的邀请您抽出几分钟参与"有奖问卷",告诉我们您对"COS生态建设"的意见和建议.希望通过这份调查问卷,能 ...
- 12.第十一篇 安装docker引擎
文章转载自:https://mp.weixin.qq.com/s?__biz=MzI1MDgwNzQ1MQ==&mid=2247483838&idx=1&sn=5a13aed5 ...
- Prometheus中使用的告警规则
参考网站:https://awesome-prometheus-alerts.grep.to/rules 这个网站上有好多常用软件的告警规则,但是有些并不一定实用,有些使用起来会有错误,这里就把这些都 ...
- 自定义mapping与常见参数
PUT test { "mappings": { "dynamic": true, "properties": { "firstn ...