• 凸函数的非线性规划

minimize 求解的是局部最优解

简单的函数,无所谓 复杂的函数 初始值的设定很重要

scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds= None,constaints=() , tol= None,Callback= None, options=None)

fun:求最小值的目标函数

args:常数值

constraints :约束条件

method:求极值方法,一 般默认。

xO:变量的初始猜测值,注意minimize是局部最优

  • instance1

计算1/x + x 的最小值

from scipy.optimize import minimize
import numpy as np def fun(args):
a = args
v = lambda x: a / x[0] + x[0]
return v if __name__ == '__main__':
args = (1,) #使用元组
x0 = np.asanyarray((2,))
res = minimize(fun(args), x0, method='SLSQP')
print(res.fun)
print(res.success)
print(res.x)

2.0000000815356342
True
[1.00028559]

  • instance2

计算(2+x1)/(1+x2)−3x1+4x3的最小值,其中x1、x2、x3范围在0.1 到 0.9 之间

from scipy.optimize import minimize
import numpy as np def fun(args):
a, b, c, d = args
v = lambda x: (a + x[0]) / (b + x[1]) - c * x[0] + d * x[2]
return v def con(args):
# 0.1 0.9 0.1 0.9
x1min, x1max, x2min, x2max, x3min, x3max = args
# eq 等式等于零 ineq 等式大于零
# x1 - 0.1 > 0
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x1min},
# 0.9 - x1 > 0 这样就将x 限制在0.1 ~ 0.9 之中
{'type': 'ineq', 'fun': lambda x: -x[0] + x1max},
{'type': 'ineq', 'fun': lambda x: x[1] - x2min},
{'type': 'ineq', 'fun': lambda x: -x[1] + x2max},
{'type': 'ineq', 'fun': lambda x: x[2] - x3min},
{'type': 'ineq', 'fun': lambda x: -x[2] + x3max})
return cons if __name__ == '__main__':
args = (2, 1, 3, 4,)
args1 = (0.1, 0.9, 0.1, 0.9, 0.1, 0.9,)
cons = con(args1) # 初始猜想值 要设的好
x0 = np.asarray((0.5, 0.5, 0.5,))
res = minimize(fun(args), x0, method='SLSQP', constraints=cons)
print(res.fun)
print(res.success)
print(res.x)

-0.773684210526435
True
[0.9 0.9 0.1]



												

基于python的数学建模---非线性规划的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python小白的数学建模课-12.非线性规划

    非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法, ...

  4. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  5. Python小白的数学建模课-16.最短路径算法

    最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...

  6. Python小白的数学建模课-15.图论基本概念

    图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...

  7. Python小白的数学建模课-19.网络流优化问题

    流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容 ...

  8. Python小白的数学建模课-17.条件最短路径

    条件最短路径问题,指带有约束条件.限制条件的最短路径问题.例如: 顶点约束,包括必经点或禁止点的限制: 边的约束,包括必经路段.禁行路段和单向路段:无权路径长度的限制,如要求经过几步或不超过几步到达终 ...

  9. Python小白的数学建模课-18.最小生成树问题

    最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现. 路线设计.道路规划.官网布局.公交路线.网络设计,都可以转化为最小生成树问题,如要求总线路长度最短.材料最少.成本 ...

  10. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

随机推荐

  1. 【Azure 环境】Azure Resource Graph Explorer 中实现动态数组数据转换成多行记录模式 - mv-expand

    问题描述 想对Azure中全部VM的NSG资源进行收集,如果只是查看一个VM的NSG设定,可以在门户页面中查看表格模式,但是如果想把导出成表格,可以在Azure Resource Graph Expl ...

  2. 在终端启动Python时报错的解决

    最近,在终端启动Python时,报了一个错误: 1 Failed calling sys.__interactivehook__ 2 Traceback (most recent call last) ...

  3. avue常用场景记录

    接手的一个项目使用的是avue这个傻瓜式的专门给后端人员用的框架,文档不够友好,使用起来各种蛋疼(咱专业前端基本上不使用).为此,专门记录一下.当前avue版本2.8.12,如果要切换avue的版本, ...

  4. 部署文件:filebeat->kafka集群(zk集群)->logstash->es集群->kibana

    该压缩包内包含以下文件: 1.install_java.txt 配置java环境,logstash使用 2.es.txt 三节点的es集群 3.filebeat.txt 获取日志输出到kafka集群 ...

  5. Elasticsearch实现类Google高级检索

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247483914&idx=1&sn=436f814 ...

  6. Deployment故障排除图解

    PDF文件下载地址:https://files.cnblogs.com/files/sanduzxcvbnm/troubleshooting-kubernetes.pdf

  7. cAdvisor容器监控规则

    其他说明参考host主机监控规则:https://www.cnblogs.com/sanduzxcvbnm/p/13589848.html 在prometheus主程序目录下的rules目录下新建do ...

  8. core-js/modules/es.error.cause.js 报错

    解决方法: 1.先删除 node_modules 依赖 npm rm -rf node_modules 2.首先安装 报错的插件 npm install --save core-js 3.最后再 np ...

  9. bilibili弹幕爬虫

    import random import requests import jieba import numpy as np from lxml import etree class SpiderBil ...

  10. 微信小程序发布与支付

    一.小程序的发布流程 小程序协同工作和发布官网链接 1.背景 小程序的平台里,开发者完成开发之后,需要在开发者工具提交小程序的代码包,然后在小程序后台发布小程序. 2.流程 上传代码 代码管理服务器上 ...