基于python的数学建模---非线性规划
- 凸函数的非线性规划

minimize 求解的是局部最优解
简单的函数,无所谓 复杂的函数 初始值的设定很重要
scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds= None,constaints=() , tol= None,Callback= None, options=None)
fun:求最小值的目标函数
args:常数值
constraints :约束条件
method:求极值方法,一 般默认。
xO:变量的初始猜测值,注意minimize是局部最优
- instance1
计算1/x + x 的最小值
from scipy.optimize import minimize
import numpy as np def fun(args):
a = args
v = lambda x: a / x[0] + x[0]
return v if __name__ == '__main__':
args = (1,) #使用元组
x0 = np.asanyarray((2,))
res = minimize(fun(args), x0, method='SLSQP')
print(res.fun)
print(res.success)
print(res.x)
2.0000000815356342
True
[1.00028559]
- instance2
计算(2+x1)/(1+x2)−3x1+4x3的最小值,其中x1、x2、x3范围在0.1 到 0.9 之间
from scipy.optimize import minimize
import numpy as np def fun(args):
a, b, c, d = args
v = lambda x: (a + x[0]) / (b + x[1]) - c * x[0] + d * x[2]
return v def con(args):
# 0.1 0.9 0.1 0.9
x1min, x1max, x2min, x2max, x3min, x3max = args
# eq 等式等于零 ineq 等式大于零
# x1 - 0.1 > 0
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x1min},
# 0.9 - x1 > 0 这样就将x 限制在0.1 ~ 0.9 之中
{'type': 'ineq', 'fun': lambda x: -x[0] + x1max},
{'type': 'ineq', 'fun': lambda x: x[1] - x2min},
{'type': 'ineq', 'fun': lambda x: -x[1] + x2max},
{'type': 'ineq', 'fun': lambda x: x[2] - x3min},
{'type': 'ineq', 'fun': lambda x: -x[2] + x3max})
return cons if __name__ == '__main__':
args = (2, 1, 3, 4,)
args1 = (0.1, 0.9, 0.1, 0.9, 0.1, 0.9,)
cons = con(args1) # 初始猜想值 要设的好
x0 = np.asarray((0.5, 0.5, 0.5,))
res = minimize(fun(args), x0, method='SLSQP', constraints=cons)
print(res.fun)
print(res.success)
print(res.x)
-0.773684210526435
True
[0.9 0.9 0.1]
基于python的数学建模---非线性规划的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-12.非线性规划
非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法, ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-16.最短路径算法
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...
- Python小白的数学建模课-15.图论基本概念
图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...
- Python小白的数学建模课-19.网络流优化问题
流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容 ...
- Python小白的数学建模课-17.条件最短路径
条件最短路径问题,指带有约束条件.限制条件的最短路径问题.例如: 顶点约束,包括必经点或禁止点的限制: 边的约束,包括必经路段.禁行路段和单向路段:无权路径长度的限制,如要求经过几步或不超过几步到达终 ...
- Python小白的数学建模课-18.最小生成树问题
最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现. 路线设计.道路规划.官网布局.公交路线.网络设计,都可以转化为最小生成树问题,如要求总线路长度最短.材料最少.成本 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
随机推荐
- Homework7
问:了解java的反射机制. 答:JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法.而对于任意一个对象,都能够调用它的任意一个方法.这种动态获取的信息以及动态调用对象的 ...
- KingbaseES 的行列转换
目录 背景 行转列 数据准备 分组聚合函数+CASE 根据压缩数据的格式,横向展开数据列选取不同方式 crosstab函数 PIVOT 操作符 PIVOT 操作符的限制 工具 ksql 的元命令 \c ...
- CPU密集型和IO密集型(判断最大核心线程的最大线程数)
CPU密集型和IO密集型(判断最大核心线程的最大线程数) CPU密集型 1.CPU密集型获取电脑CPU的最大核数,几核,最大线程数就是几Runtime.getRuntime().availablePr ...
- Go工程化 - 依赖注入
我们在微服务框架kratos v2的默认项目模板中kratos-layout使用了google/wire进行依赖注入,也建议开发者在维护项目时使用该工具. wire 乍看起来比较违反直觉,导致很多同学 ...
- scheduler打印状态到日志
编辑脚本和目录 # 如下步骤每个proxysql节点都需要操作 [root@ss30 opt]# mkdir -p /opt/proxysql/log [root@ss30 opt]# vim /op ...
- windows系统下使用bat脚本文件设置MySQL系统环境变量
说明:在一个bat文件中设置tomcat环境变量后,不能直接使用,需要另起一个bat文件才能使用 号开头的行不要写在bat文件中 # 这个bat文件实现的功能:设置环境变量 @echo off set ...
- 使用docker-compose方式部署es和kibana以及cerebro
使用的镜像可以从这个网站查看最新的:https://hub.docker.com/ 参考极客时间上的教程转发来的 使用步骤:安装docker和docker-compose 运行: docker-com ...
- MongoDB 分片集群的用户和权限一般操作步骤
步骤总结: 按照mongos路由.配置副本集服务,分片副本集服务的先后顺序关闭所有节点服务 创建副本集认证的key文件,复制到每个服务所在目录 修改每个服务的配置文件,增加参数 启动每个服务 创建账号 ...
- 17. Fluentd输出插件:out_copy用法详解
copy即复制,out_copy的作用就是将日志事件复制到多个输出,这样就可以对同一份日志做不同类型的分析处理. out_copy内置于Fluentd,无需单独安装. 示例配置 <match p ...
- linux安装Texinfo
安装步骤 tar zxvf texinfo-5.2.tar.gz cd texinfo-5.2 ./configure --prefix=/usr make make check make insta ...