忽如一夜春风来,亚洲天后孙燕姿独特而柔美的音色再度响彻华语乐坛,只不过这一次,不是因为她出了新专辑,而是人工智能AI技术对于孙燕姿音色的完美复刻,以大江灌浪之势对华语歌坛诸多经典作品进行了翻唱,还原度令人咋舌,如何做到的?

本次我们借助基于Python3.10的开源库so-vits-svc,让亚洲天后孙燕姿帮我们免费演唱喜欢的歌曲,实现点歌自由。

so-vits-svc是基于VITS的开源项目,VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种结合变分推理(variational inference)、标准化流(normalizing flows)和对抗训练的高表现力语音合成模型。

VITS通过隐变量而非频谱串联起来语音合成中的声学模型和声码器,在隐变量上进行随机建模并利用随机时长预测器,提高了合成语音的多样性,输入同样的文本,能够合成不同声调和韵律的语音。

环境配置

首先确保本机已经安装好Python3.10的开发环境,随后使用Git命令克隆项目:

git clone https://github.com/svc-develop-team/so-vits-svc.git

随后进入项目的目录:

cd so-vits-svc

接着安装依赖,如果是Linux或者Mac系统,运行命令:

pip install -r requirements.txt

如果是Windows用户,需要使用Win系统专用的依赖文件:

pip install -r requirements_win.txt

依赖库安装成功之后,在项目的根目录运行命令,启动服务:

python webUI.py

程序返回:

PS D:\so-vits-svc> python .\webUI.py
DEBUG:charset_normalizer:Encoding detection: ascii is most likely the one.
C:\Users\zcxey\AppData\Roaming\Python\Python310\site-packages\gradio\deprecation.py:43: UserWarning: You have unused kwarg parameters in UploadButton, please remove them: {'variant': 'primary'}
warnings.warn(
DEBUG:asyncio:Using proactor: IocpProactor
Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`.

说明服务已经正常启动了,这里so-vits-svc会在后台运行一个基于Flask框架的web服务,端口号是7860,此时访问本地的网址:127.0.0.1:7860:

此时,我们就可以加载模型,模型训练先按下不表,这里先使用已经训练好的孙燕姿音色模型:

链接:https://pan.baidu.com/s/1RwgRe6s4HCA2eNI5sxHZ9A?pwd=7b4a
提取码:7b4a

下载模型文件之后,将模型文件放入logs/44k目录:

D:\so-vits-svc\logs\44k>dir
驱动器 D 中的卷是 新加卷
卷的序列号是 9824-5798 D:\so-vits-svc\logs\44k 的目录 2023/05/10 12:31 <DIR> .
2023/05/10 11:49 <DIR> ..
2023/04/08 15:22 542,178,141 G_27200.pth
2023/04/08 15:54 15,433,721 kmeans_10000.pt
2023/05/10 11:49 0 put_pretrained_model_here
3 个文件 557,611,862 字节
2 个目录 475,872,493,568 可用字节 D:\so-vits-svc\logs\44k>

接着将模型的配置文件config.js放入configs目录:

D:\so-vits-svc\configs>dir
驱动器 D 中的卷是 新加卷
卷的序列号是 9824-5798 D:\so-vits-svc\configs 的目录 2023/05/10 11:49 <DIR> .
2023/05/10 12:23 <DIR> ..
2023/04/08 12:33 2,118 config.json
1 个文件 2,118 字节
2 个目录 475,872,493,568 可用字节 D:\so-vits-svc\configs>

随后,在页面中点击加载模型即可,这里环境就配置好了。

原始歌曲处理(人声和伴奏分离)

如果想要使用孙燕姿的模型进行推理,让孙燕姿同学唱别的歌手的歌,首先需要一段已经准备好的声音范本,然后使用模型把原来的音色换成孙燕姿模型训练好的音色,有些类似Stable-Diffusion的图像风格迁移,只不过是将绘画风格替换为音色和音准。

这里我们使用晴子的《遥远的歌》,这首歌曲调悠扬,如诉如泣,和孙燕姿婉转的音色正好匹配。好吧,其实是因为这首歌比较简单,方便新手练习。

需要注意的是,模型推理过程中,需要的歌曲样本不应该包含伴奏,因为伴奏属于“噪音”,会影响模型的推理效果,因为我们替换的是歌手的“声音”,并非伴奏。

这里我们选择使用开源库Spleeter来对原歌曲进行人声和伴奏分离,首先安装spleeter:

pip3 install spleeter --user

接着运行命令,对《遥远的歌》进行分离操作:

spleeter separate -o d:/output/ -p spleeter:2stems d:/遥远的歌.mp3

这里-o代表输出目录,-p代表选择的分离模型,最后是要分离的素材。

首次运行会比较慢,因为spleeter会下载预训练模型,体积在1.73g左右,运行完毕后,会在输出目录生成分离后的音轨文件:

C:\Users\zcxey\Downloads\test>dir
驱动器 C 中的卷是 Windows
卷的序列号是 5607-6354 C:\Users\zcxey\Downloads\test 的目录 2023/05/09 13:17 <DIR> .
2023/05/10 20:57 <DIR> ..
2023/05/09 13:17 26,989,322 accompaniment.wav
2023/05/09 13:17 26,989,322 vocals.wav
2 个文件 53,978,644 字节
2 个目录 182,549,413,888 可用字节

其中vocals.wav为晴子的清唱声音,而accompaniment.wav则为伴奏。

关于spleeter更多的操作,请移步至:人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10) , 这里不再赘述。

至此,原始歌曲就处理好了。

歌曲推理

此时,将晴子的清唱声音vocals.wav文件添加到页面中:

接着就是参数的调整:

这里推理歌曲会有两个问题,就是声音沙哑和跑调,二者必居其一。

F0均值滤波(池化)参数开启后可以有效改善沙哑问题,但有概率导致跑调,而降低该值则可以减少跑调的概率,但又会出现声音沙哑的问题。

基本上,推理过程就是在这两个参数之间不断地调整。

所以每一次推理都需要认真的听一下歌曲有什么问题,然后调整参数的值,这里我最终的参数调整结果如上图所示。

推理出来的歌曲同样也是wav格式,此时我们将推理的清唱声音和之前分离出来的伴奏音乐accompaniment.wav进行合并即可,这里推荐使用FFMPEG

ffmpeg -f concat -i <( for f in *.wav; do echo "file '$(pwd)/$f'"; done ) output.wav

该命令可以把推理的人声wav和背景音乐wav合并为一个output.wav歌曲,也就是我们最终的作品。

结语

藉此,我们就完成了自由点歌让天后演唱的任务,如果后期配上画面和歌词的字幕,不失为一个精美的AI艺术品,在Youtube(B站)搜索关键字:刘悦的技术博客,即可欣赏最终的成品歌曲,欢迎诸君品鉴。

AI天后,在线飙歌,人工智能AI孙燕姿模型应用实践,复刻《遥远的歌》,原唱晴子(Python3.10)的更多相关文章

  1. 含辞未吐,声若幽兰,史上最强免费人工智能AI语音合成TTS服务微软Azure(Python3.10接入)

    所谓文无第一,武无第二,云原生人工智能技术目前呈现三足鼎立的态势,微软,谷歌以及亚马逊三大巨头各擅胜场,不分伯仲,但目前微软Azure平台不仅仅只是一个PaaS平台,相比AWS,以及GAE,它应该是目 ...

  2. 闻其声而知雅意,基于Pytorch(mps/cpu/cuda)的人工智能AI本地语音识别库Whisper(Python3.10)

    前文回溯,之前一篇:含辞未吐,声若幽兰,史上最强免费人工智能AI语音合成TTS服务微软Azure(Python3.10接入),利用AI技术将文本合成语音,现在反过来,利用开源库Whisper再将语音转 ...

  3. NotionAI - 文档领域的ChatGPT,一款 AI 加持的在线文档编辑和管理工具

    简介 NotionAI - 文档领域的ChatGPT,一款 AI 加持的在线文档编辑和管理工具 作为国际领先的在线文档编辑和管理工具,Notion受到了广大用户的欢迎,尤其是程序员们.它不仅支持笔记. ...

  4. 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?

    本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...

  5. 【转】人工智能(AI)资料大全

    这里收集的是关于人工智能(AI)的教程.书籍.视频演讲和论文. 欢迎提供更多的信息. 在线教程 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程 人工智能入门 – 人工智能基础学习.Peter ...

  6. 人工智能--AI篇

    AI背景 在当今互联网信息高速发展的大背景下,人工智能(AI)已经开始走进了千家万户,逐渐和我们的生活接轨,那具体什么是AI呢? 什么是人工智能(AI)? 人工智能:简单理解就是由人制造出来的,有一定 ...

  7. 解读 --- 基于微软企业商务应用平台 (Microsoft Dynamics 365) 之上的人工智能 (AI) 解决方案

    9月25日微软今年一年一度的Ignite 2017在佛罗里达州奥兰多市还是如期开幕了.为啥这么说?因为9月初五级飓风厄玛(Hurricane Irma) 在佛罗里达州登陆,在当地造成了挺大的麻烦.在这 ...

  8. 人工智能AI芯片与Maker创意接轨(下)

    继「人工智能AI芯片与Maker创意接轨」的(上)篇中,认识了人工智能.深度学习,以及深度学习技术的应用,以及(中)篇对市面上AI芯片的类型及解决方案现况做了完整剖析后,系列文到了最后一篇,将带领各位 ...

  9. 人工智能AI芯片与Maker创意接轨 (中)

    在人工智能AI芯片与Maker创意接轨(上)这篇文章中,介绍人工智能与深度学习,以及深度学习技术的应用,了解内部真实的作业原理,让我们能够跟上这波AI新浪潮.系列文来到了中篇,将详细介绍目前市面上的各 ...

  10. 人工智能AI芯片与Maker创意接轨 (上)

    近几年来人工智能(Artificial Intelligence, AI)喴的震天价响,吃也要AI,穿也要AI,连上个厕所也要来个AI智能健康分析,生活周遭食衣住行育乐几乎无处不AI,彷佛已经来到科幻 ...

随机推荐

  1. “你帮我助”软件开发(Final)

    本项目是上海交通大学 CS-3331 软件工程课程大作业. 作业描述 "你帮我助"软件开发(Final) 新的功能需求: 物品有公共的信息(物品名称,物品说明,物品所在地址,联系人 ...

  2. ArcEngine构造多部件

  3. Codeforces Round 857 (Div. 2) A-D

    Codeforces Round 857 (Div. 2) A. Likes 求每回合最大的数列:先全使用正数,每个正数对ans++,再全使用负数,每个负数对ans-- 求每回合最小的数列:方法1(模 ...

  4. ECharts连接数据库的具体实现

    相关描述 我们由之前的实例可以得知,要是不连接数据库的话,只是需要套用一下ECharts的相关模板即可,这部分内容我在前几篇中已经叙述过了: 现在,我们需要实现的是,将数据库里面的数据导入到web网页 ...

  5. Centos7端口开放及查看

    1.开放端口 firewall-cmd --zone=public --add-port=端口/tcp --permanent eg:firewall-cmd --zone=public --add- ...

  6. 安装Windows10后电脑整体速度变慢

    是不是觉得从旧版本Windows系统比如(Windows 7)升级到Windows10以后,感觉什么操作都变慢了.譬如打开文件夹,游戏加载速度变缓慢.尤其是腾讯WeGame软件进入游戏前的检测速度明显 ...

  7. MapReduce Shuffle源码解读

    MapReduce Shuffle源码解读 相信很多小伙伴都背过shuffle的八股文,但一直不是很理解shuffle的过程,这次我通过源码来解读下shuffle过程,加深对shuffle的理解,但是 ...

  8. .NET周报 【3月第4期 2023-03-24】

    国内文章 .NET应用系统的国际化-多语言翻译服务 https://www.cnblogs.com/tianqing/p/17232559.html 本文重点介绍了多语言翻译服务的设计和实现.文章描述 ...

  9. 单机最快的队列Disruptor解析和使用

    前言 介绍高性能队列Disruptor原理以及使用例子. Disruptor是什么? Disruptor是外汇和加密货币交易所运营商 LMAX group 建立高性能的金融交易所的结果.用于解决生产者 ...

  10. 存储系统模拟—R实现

    存储系统 存储问题是人们最熟悉又最需要研究的问题之一.例如企业储存的原材料.在制品等,存储太少,不足以满足生产的需要,将使生产过程中断; 存储太多,超过了生产的需要,将造成资金及资源的积压浪费.商店储 ...