欢迎关注公众号【Python开发实战】, 获取更多内容!

工具-numpy

numpy是使用Python进行数据科学的基础库。numpy以一个强大的N维数组对象为中心,它还包含有用的线性代数,傅里叶变换和随机数函数。

ndarray的迭代

导入numpy

import numpy as np

在ndarray的迭代与常规Python数组的迭代非常相似。但是需要住的是,多维ndarray的迭代是相对于第一个轴完成的。

c = np.arange(24).reshape(2, 3, 4)
c

输出:

array([[[ 0,  1,  2,  3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
for m in c:
print('item:')
print(m)

输出:

item:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
item:
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]
for i in range(len(c)):  # 这里,len(c)等于c.shape[0]
print('item')
print(c[i])

输出:

item
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
item
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]

如果想要迭代ndarray中的所有元素,需要对ndarray的flat属性进行迭代。

for i in c.flat:
print('item: ', i)

输出:

item:  0
item: 1
item: 2
item: 3
item: 4
item: 5
item: 6
item: 7
item: 8
item: 9
item: 10
item: 11
item: 12
item: 13
item: 14
item: 15
item: 16
item: 17
item: 18
item: 19
item: 20
item: 21
item: 22
item: 23

堆叠ndarray

将不同的ndarray堆叠在一起通常很有用。numpy提供了几个函数来实现堆叠。介绍堆叠函数之前,先创建几个ndarray。

q1 = np.full((3, 4), 1.0)
q1

输出:

array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
q2 = np.full((4, 4), 2.0)
q2

输出:

array([[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.]])
q3 = np.full((3, 4), 3.0)
q3

输出:

array([[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])

vstack

vstack可以垂直堆叠ndarray,但是要满足需要堆叠的ndarray,除了垂直轴以外,即在水平轴上要具有相同的形状。

q4 = np.vstack((q1, q2, q3))
q4

输出:

array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])
q4.shape

输出:

(10, 4)

hstack

hstack可以水平堆叠ndarray。但是要满足需要堆叠的ndarray在垂直轴上具有相同的形状。

q5 = np.hstack((q1, q3))
q5

输出:

array([[1., 1., 1., 1., 3., 3., 3., 3.],
[1., 1., 1., 1., 3., 3., 3., 3.],
[1., 1., 1., 1., 3., 3., 3., 3.]])
q5.shape

输出:

(3, 8)
try:
q6 = np.hstack((q1, q2, q3))
except ValueError as e:
print(e)

输出:

all the input array dimensions except for the concatenation axis must match exactly

concatenate

concatenate可以沿给定的现有轴进行堆叠, 故vstack相当于调用axis=0的concatenate, hstack相当于调用axis=1的concatenate。

q7 = np.concatenate((q1, q2, q3), axis=0)  # 相当于vstack
q7

输出:

array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.],
[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])
q7.shape

输出:

(10, 4)
q8 = np.concatenate((q1, q3), axis=1)   # 相当于hstack
q8

输出:

array([[1., 1., 1., 1., 3., 3., 3., 3.],
[1., 1., 1., 1., 3., 3., 3., 3.],
[1., 1., 1., 1., 3., 3., 3., 3.]])
q8.shape

输出:

(3, 8)

stack

stack是沿着新轴进行堆叠,因此需要堆叠的ndarray必需具有相同的shape.

q9 = np.stack((q1, q3))
q9

输出:

array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], [[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]]])
q9.shape

输出:

(2, 3, 4)
try:
q10 = np.stack((q1, q2))
except ValueError as e:
print(e)

输出:

all input arrays must have the same shape

拆分ndarray

拆分ndarray与堆叠相反。

r = np.arange(24).reshape(6, 4)
r

输出:

array([[ 0,  1,  2,  3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]])

vsplit

vsplit可以垂直拆分ndarray, 下面的例子是将r垂直分成三等份。

r1, r2, r3 = np.vsplit(r, 3)
r1

输出:

array([[0, 1, 2, 3],
[4, 5, 6, 7]])
r2

输出:

array([[ 8,  9, 10, 11],
[12, 13, 14, 15]])
r3

输出:

array([[16, 17, 18, 19],
[20, 21, 22, 23]])

hsplit

hsplit可以水平拆分ndarray。

r4, r5 = np.hsplit(r, 2)
r4

输出:

array([[ 0,  1],
[ 4, 5],
[ 8, 9],
[12, 13],
[16, 17],
[20, 21]])
r5

输出:

array([[ 2,  3],
[ 6, 7],
[10, 11],
[14, 15],
[18, 19],
[22, 23]])

split

split可以沿给定的现有轴进行拆分,调用axis=0的split相当于调用vsplit,调用axis=1的split相当于调用hsplit。

r6, r7 = np.split(r, 2, axis=1)
r6

输出:

array([[ 0,  1],
[ 4, 5],
[ 8, 9],
[12, 13],
[16, 17],
[20, 21]])

转置ndarray

transpose函数是在ndarray的数据上创建一个新的视图,并按照给定顺序对轴排列。

t = np.arange(24).reshape(4, 2, 3)
t

输出:

array([[[ 0,  1,  2],
[ 3, 4, 5]], [[ 6, 7, 8],
[ 9, 10, 11]], [[12, 13, 14],
[15, 16, 17]], [[18, 19, 20],
[21, 22, 23]]])

现在创建一个ndarray,将轴0、1、2(深度、高度、宽度)重新排列为1、2、0(高度、宽度、深度)。

t1 = t.transpose((1, 2, 0))
t1

输出:

array([[[ 0,  6, 12, 18],
[ 1, 7, 13, 19],
[ 2, 8, 14, 20]], [[ 3, 9, 15, 21],
[ 4, 10, 16, 22],
[ 5, 11, 17, 23]]])
t1.shape

输出:

(2, 3, 4)

默认情况下,transpose会翻转轴的顺序。

t2 = t.transpose()   # 相当于t.transpose((2, 1, 0))
t2

输出:

array([[[ 0,  6, 12, 18],
[ 3, 9, 15, 21]], [[ 1, 7, 13, 19],
[ 4, 10, 16, 22]], [[ 2, 8, 14, 20],
[ 5, 11, 17, 23]]])
t2.shape

输出:

(3, 2, 4)

numpy提供了一个方便的swapaxes来交换两个轴, 例如,创建一个深度和高度交换的ndarray。

t3 = t.swapaxes(0, 1)
t3

输出:

array([[[ 0,  1,  2],
[ 6, 7, 8],
[12, 13, 14],
[18, 19, 20]], [[ 3, 4, 5],
[ 9, 10, 11],
[15, 16, 17],
[21, 22, 23]]])
t3.shape

输出:

(2, 4, 3)

numpy教程05---ndarray的高级操作的更多相关文章

  1. 数据分析05 /pandas的高级操作

    数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表 ...

  2. W3School Redis教程(安装/基本操作/高级操作/命令/官方文档/官方集群教程)

    说明:Redis有自身的客户端连接软件,也可以使用Telnet进行连接操作. 来自W3School的Redis教程,基本上涵盖了从安装到状态监控的教程. W3School:https://www.gi ...

  3. W3School Memcached教程(安装/基本操作/高级操作/命令)

    来自W3School的Memcached教程,基本上涵盖了从安装到状态监控的教程. 不过最全的应该是官方提供在GitHub上的Wiki教程,一切的标准都来自官方,参考:https://github.c ...

  4. Numpy ndarray 的高级索引存在 "bug" ?

    Numpy ndarray 高级索引 "bug" ? 话说一天,搞事情,代码如下 import numpy as np tmp = [1, 2, 3, 4] * 2 a, b = ...

  5. MDN 文档高级操作进阶教程

    MDN 文档高级操作进阶教程 MDN 文档, 如何优雅的使用 MDN 文档上的富文本编辑器 pre & 语法高亮器 code & note box source code 上传附件 i ...

  6. numpy教程

    [转]CS231n课程笔记翻译:Python Numpy教程 原文链接:https://zhuanlan.zhihu.com/p/20878530 译者注:本文智能单元首发,翻译自斯坦福CS231n课 ...

  7. 转:Numpy教程

    因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog ...

  8. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  9. pandas高级操作

    pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作 ...

  10. 【MongoDB详细使用教程】四、python操作MongoDB

    目录 1.安装pymongo 2.连接数据库 3.操作数据库 3.1.查 3.2.增 3.3.改 3.4.删 使用第三方库pymongo来实现python对MongoDB的操作 pymongo官方文档 ...

随机推荐

  1. web Javascript360°全景实现

    360 全景浏览是一种性价比很高的虚拟现实解决方案,给人一种全新的浏览体验,让你足不出户就能身临其境地感受到现场的环境.该技术被广泛地应用在房产.酒店.家居等领域. 下面我们使用三种方法讨论一个 36 ...

  2. atoi atof atol

    在c语言中提供了把字符串转化为整数的函数,并没有提供把整数转化为字符串的函数 atoi是标准的库函数 itoa不是标准的库函数(在vs可编译,其它系统中未知) atol把一个字符串转化为long类型 ...

  3. k8s集群关机后,如何解决 kubernetes 重启起不来的问题

    如何解决 kubernetes 重启后,启来不来的问题 登录自己的Kubernetes测试集群时发现集群好像没有启动成功 运行 kubectl get pods --all -A ,报错如下. 第一反 ...

  4. 问鼎杯预赛web writeup

    1. php的一个精度问题,具体什么精度自己查. 2017.000000000001=2017 2016.999999999999=2017 直接拿谷歌浏览器访问那个链接就可以拿到flag 2. 访问 ...

  5. Pipeline 有什么好处,为什么要用 pipeline?

    答:可以将多次 IO 往返的时间缩减为一次,前提是 pipeline 执行的指令之间没有 因果相关性.使用 redis-benchmark 进行压测的时候可以发现影响 redis 的 QPS 峰值的一 ...

  6. ThreadPoolTaskExecutor原理、详解及案例

    为什么要用线程池? 服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的. 构建服务器应用程序的一个过于简单的模型应该是:每当一个请求到达就创建一个新线程,然后在新线程中为请 ...

  7. String s = new String("xyz");创建了几个字符串对象?

    两个对象,一个是静态区的"xyz",一个是用new创建在堆上的对象.

  8. Zookeeper 对节点的 watch监听通知是永久的吗?为什么 不是永久的?

    不是.官方声明:一个 Watch 事件是一个一次性的触发器,当被设置了 Watch 的数据发生了改变的时候,则服务器将这个改变发送给设置了 Watch 的客户端, 以便通知它们. 为什么不是永久的,举 ...

  9. Java 中 interrupted 和 isInterrupted 方法的区别?

    interrupt interrupt 方法用于中断线程.调用该方法的线程的状态为将被置为"中断"状态. 注意:线程中断仅仅是置线程的中断状态位,不会停止线程.需要用户自己去监 视 ...

  10. mac-brew

    brew search [TEXT|/REGEX/] 搜索软件 brew (info|home|options) [FORMULA...] 查询软件信息 brew install FORMULA... ...