Inverted bipolar transistor doubles as a signal clamp
A number of circuits, such as level detectors and AM demodulators, benefit from a rectifier with a low offset voltage. Silicon diodes have an offset of approximately 0.6V and do not work well in low-level circuitry. A Schottky diode is a bit better with an offset of approximately 0.4V. A few germanium diodes are still available, but they do not tolerate the temperature range of silicon. Also, you can't include a germanium diode in an IC. A superior configuration uses a bipolar transistor for these applications.
Figure 1 shows the bipolar-inverted-clamp circuit and a typical transfer function. The collector connects to ground or any other desired reference voltage. A fixed current drives the base. In the absence of any external drive, the emitter voltage is near zero. Driving the emitter with an external voltage produces the transfer function in Figure 1.
The circuit achieves this excellent rectification characteristic by using a transistor with a large forward-beta-to-reverse-beta ratio. Many of these transistors are still available. The 2N3904 provides excellent characteristics at a low cost. The reverse beta of the 2N3904 is only 0.25, so that for positive voltage on the emitter and, with 40 µA of base drive, the emitter current is around 10 µA. This current is sufficient in most level-detector applications for which the ac input amplitude changes slowly.
The emitter current at even small negative voltages is much greater than in the inverted region because the forward beta of the 2N3904 is greater than 100. Impedance is low up to the beta-limited forward current, at which point the impedance increases to approximately the value of R1/beta. Figure 2 shows the forward-transistor emitter current of the 2N3904 and the forward current of the 1N34 germanium point-contact diode. The logarithmic current scale shows the impressive response of the 2N3904 at small voltages.
Figure 3 shows the output as a level detector for the two clamps. The transistor circuit that produced these results is similar to the demodulator in Figure 4 except the base drive is 40 µA. For the 1N34, the anode connects to grounded and the cathode connects to the input capacitor in place of the transistor's emitter. Figure 3 shows that the two configurations have similar responses to input levels, and that the 2N3904 has a bit less offset, as you would expect from Figure 2. The output can drive a signal level meter or following electronics as part of an automatic-level-control or automatic-gain-control loop.
The transfer function in Figure 1 also shows a sudden increase in inverted current at approximately 7.6V, which occurs at the reverse breakdown voltage for the emitter-to-base junction. Because you know in this case that the base is near 0.6V, the breakdown voltage for the tested part is near 7V. Production circuits would have an input limit of 6.6V p-p because of the minimum specified breakdown voltage of 6V. Note that, for a small production, such as for test equipment, it is practical to select individual transistors to slightly increase the dynamic range. A 6V p-p input dynamic range is sufficient in many applications.
The RF demodulator in Figure 4 has a base drive current of 300 µA. This current is necessary to track the RF-modulation envelope and depends on the size of the input capacitor, modulation frequency, and maximum signal amplitude. The reverse current, which is IBASE times the reverse beta, must be large enough to discharge the input capacitor at the highest modulation frequency and amplitude to prevent distortion in the output waveform. Figure 5 shows the running demodulator with the upper trace at the emitter node and the lower trace at the output.
Inverted bipolar transistor doubles as a signal clamp的更多相关文章
- RFID Exploration and Spoofer a bipolar transistor, a pair of FETs, and a rectifying full-bridge followed by a loading FET
RFID Exploration Louis Yi, Mary Ruthven, Kevin O'Toole, & Jay Patterson What did you do? We made ...
- Bipolar transistor boosts switcher's current by 12 times
The circuit in Figure 1 uses a minimal number of external parts to raise the maximum output current ...
- Transistor 晶体管 场效应 双极型 达林顿 CMOS PMOS BJT FET
Transistor Tutorial Summary Transistor Tutorial Summary Bipolar Junction Transistor Tutorial We can ...
- Dual transistor improves current-sense circuit
In multiple-output power supplies in which a single supply powers circuitry of vastly different curr ...
- RFID 基础/分类/编码/调制/传输
不同频段的RFID产品会有不同的特性,本文详细介绍了无源的感应器在不同工作频率产品的特性以及主要的应用. 目前定义RFID产品的工作频率有低频.高频和甚高频的频率范围内的符合不同标准的不同的产品,而且 ...
- 5V and 3V Level Translators
http://www.daycounter.com/Circuits/Level-Translators/Level-Translators.phtml Interfacing 5V and 3V l ...
- RFID 仿真/模拟/监控/拦截/检测/嗅探器
Sound card based RFID sniffer/emulator (Too tired after recon.cx to do draw the schematics better th ...
- VCC、VDD、VEE、VSS等有关电源标注的区别
Almost all integrated circuits (ICs) have at least two pins which connect to the power rails of the ...
- orcad原理图与PSPICE模型库名称
Vendor PSpice Model Description Advanced Linear Devices adv_lin.lib Library of op-amps Advanced Line ...
随机推荐
- openjudge-NOI 2.6-1944 吃糖果
题目链接:http://noi.openjudge.cn/ch0206/1944/ 题解: 递推,题目中给出了很详细的过程,不讲解 #include<cstdio> int n; int ...
- GitBash、EGit、SourceTree三个Git管理工具对比
Git管理工具对比(GitBash.EGit.SourceTree) GitBash是采用命令行的方式对版本进行管理,功能最为灵活强大,但是由于需要手动输入希望修改的文件名,所以相对繁琐. EGit是 ...
- SQL:select case when 的用法
CASE 可能是 SQL 中被误用最多的关键字之一.虽然你可能以前用过这个关键字来创建字段,但是它还具有更多用法.例如,你可以在 WHERE 子句中使用 CASE. 首先让我们看一下 CASE 的语法 ...
- beego学习笔记(4):开发文档阅读(1)
1.beego的设计是高度模块化的.每个模块,都可以单独使用.一共八大模块: cache;session;log;orm;context;httplibs;toolbox 2.beego的执行逻辑 3 ...
- Binary Tree Zigzag Level Order Traversal——关于广度优先的经典面试题
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...
- css3 box-sizing属性值详解
box-sizing属性可以为三个值之一:content-box(default),border-box,padding-box. content-box,border和padding不计算入widt ...
- [实战]MVC5+EF6+MySql企业网盘实战(26)——音乐列表
写在前面 本篇文章将实现,音乐列表,同样和其他列表的不同之处,在于查询条件的不同. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySql企业网 ...
- 【LOJ】 #2521. 「FJOI2018」领导集团问题
题解 这道题很显然可以想出来一个\(n^2\)的dp,也就是dp[u][i]表示以u为根的子树最大值是i的点集最大是多少(i是离散化后的值) 就是对于每个儿子处理出后缀最大值然后按位相加更新父亲,我们 ...
- 【SpringBoot】关闭HttpClient无用日志
环境: SpringBoot pom依赖了apache.commons.HttpClient: <!--httpclient--> <dependency> <group ...
- Linux-数据库1
数据库介绍 数据库(database,DB)是指长期存储在计算机内的,有组织,可共享的数据的集合.数据库中的数据按一定的数学模型组织.描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种 ...