A number of circuits, such as level detectors and AM demodulators, benefit from a rectifier with a low offset voltage. Silicon diodes have an offset of approximately 0.6V and do not work well in low-level circuitry. A Schottky diode is a bit better with an offset of approximately 0.4V. A few germanium diodes are still available, but they do not tolerate the temperature range of silicon. Also, you can't include a germanium diode in an IC. A superior configuration uses a bipolar transistor for these applications.

Figure 1 shows the bipolar-inverted-clamp circuit and a typical transfer function. The collector connects to ground or any other desired reference voltage. A fixed current drives the base. In the absence of any external drive, the emitter voltage is near zero. Driving the emitter with an external voltage produces the transfer function in Figure 1.

The circuit achieves this excellent rectification characteristic by using a transistor with a large forward-beta-to-reverse-beta ratio. Many of these transistors are still available. The 2N3904 provides excellent characteristics at a low cost. The reverse beta of the 2N3904 is only 0.25, so that for positive voltage on the emitter and, with 40 µA of base drive, the emitter current is around 10 µA. This current is sufficient in most level-detector applications for which the ac input amplitude changes slowly.

The emitter current at even small negative voltages is much greater than in the inverted region because the forward beta of the 2N3904 is greater than 100. Impedance is low up to the beta-limited forward current, at which point the impedance increases to approximately the value of R1/beta. Figure 2 shows the forward-transistor emitter current of the 2N3904 and the forward current of the 1N34 germanium point-contact diode. The logarithmic current scale shows the impressive response of the 2N3904 at small voltages.

Figure 3 shows the output as a level detector for the two clamps. The transistor circuit that produced these results is similar to the demodulator in Figure 4 except the base drive is 40 µA. For the 1N34, the anode connects to grounded and the cathode connects to the input capacitor in place of the transistor's emitter. Figure 3 shows that the two configurations have similar responses to input levels, and that the 2N3904 has a bit less offset, as you would expect from Figure 2. The output can drive a signal level meter or following electronics as part of an automatic-level-control or automatic-gain-control loop.

The transfer function in Figure 1 also shows a sudden increase in inverted current at approximately 7.6V, which occurs at the reverse breakdown voltage for the emitter-to-base junction. Because you know in this case that the base is near 0.6V, the breakdown voltage for the tested part is near 7V. Production circuits would have an input limit of 6.6V p-p because of the minimum specified breakdown voltage of 6V. Note that, for a small production, such as for test equipment, it is practical to select individual transistors to slightly increase the dynamic range. A 6V p-p input dynamic range is sufficient in many applications.

The RF demodulator in Figure 4 has a base drive current of 300 µA. This current is necessary to track the RF-modulation envelope and depends on the size of the input capacitor, modulation frequency, and maximum signal amplitude. The reverse current, which is IBASE times the reverse beta, must be large enough to discharge the input capacitor at the highest modulation frequency and amplitude to prevent distortion in the output waveform. Figure 5 shows the running demodulator with the upper trace at the emitter node and the lower trace at the output.

Inverted bipolar transistor doubles as a signal clamp的更多相关文章

  1. RFID Exploration and Spoofer a bipolar transistor, a pair of FETs, and a rectifying full-bridge followed by a loading FET

    RFID Exploration Louis Yi, Mary Ruthven, Kevin O'Toole, & Jay Patterson What did you do? We made ...

  2. Bipolar transistor boosts switcher's current by 12 times

    The circuit in Figure 1 uses a minimal number of external parts to raise the maximum output current ...

  3. Transistor 晶体管 场效应 双极型 达林顿 CMOS PMOS BJT FET

    Transistor Tutorial Summary Transistor Tutorial Summary Bipolar Junction Transistor Tutorial We can ...

  4. Dual transistor improves current-sense circuit

    In multiple-output power supplies in which a single supply powers circuitry of vastly different curr ...

  5. RFID 基础/分类/编码/调制/传输

    不同频段的RFID产品会有不同的特性,本文详细介绍了无源的感应器在不同工作频率产品的特性以及主要的应用. 目前定义RFID产品的工作频率有低频.高频和甚高频的频率范围内的符合不同标准的不同的产品,而且 ...

  6. 5V and 3V Level Translators

    http://www.daycounter.com/Circuits/Level-Translators/Level-Translators.phtml Interfacing 5V and 3V l ...

  7. RFID 仿真/模拟/监控/拦截/检测/嗅探器

    Sound card based RFID sniffer/emulator (Too tired after recon.cx to do draw the schematics better th ...

  8. VCC、VDD、VEE、VSS等有关电源标注的区别

    Almost all integrated circuits (ICs) have at least two pins which connect to the power rails of the ...

  9. orcad原理图与PSPICE模型库名称

    Vendor PSpice Model Description Advanced Linear Devices adv_lin.lib Library of op-amps Advanced Line ...

随机推荐

  1. linux系统查找具体进程

    ps -ef | grep '查找内容' eg:ps -ef | grep '测试USB设备穿透'

  2. ORACLE数据库导出导入数据

    准备工作: 1.登录管理员system 2.create directory dbdata as 'C:\oracle\tempData';--创建备份文件夹 3.grant read,write o ...

  3. 2、gitlab 新建项目

    一.创建项目 1.访问gitlab并登录 http://git.xh.com/ 2.点击 Projects -> Starred projects 每个版本的gitlab不太一样但位置都差不多 ...

  4. Python股票信息抓取(二)

    在一的基础上,想着把所有的折线图放在一个图中,然后图的结果如图所示: 不是略丑,是很丑~ 依然的单进程,只是将图标结果放在了一张图里 代码如下: #-*-coding:utf-8 -*- import ...

  5. MySQL之基础功能

    一.视图 视图:是一个虚拟表,其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据 视图有如下特点: 1. 视图的列可以来自不同的表,是表的抽象和逻辑意义上建立的新关系. 2. 视图是 ...

  6. Eolinker——前置用例返回的reponse值进行传递

    如下补充均是Eolinker的文档中未说明的部分 示例:将login接口reponse中的mobile的值作为参数,传递给”重置密码”的请求体“code" 1.打开”前置用例“,先点击左上角 ...

  7. C++中对已分配空间的指针调用一个类的构造函数

    在看MINIBASE的源代码的时候发现里面有类似于这样的东西 bufTable = (BufDesc*) MINIBASE_SHMEM->malloc( numBuffers * sizeof( ...

  8. markdown 测试代码

    这是 H1 这是 H2 这是 H3 这是 H4 这是 H5 这是 H6 A First Level Header A Second Level Header Now is the time for a ...

  9. python中调用cmd

    1. 使用os.system("cmd") 这是最简单的一种方法,特点是执行的时候程序会打出cmd在linux上执行的信息.使用前需要import os. os.system(&q ...

  10. loadrunner可用许可证

    global-100: AEAMAUIK-YAFEKEKJJKEEA-BCJGIweb-10000: AEABEXFR-YTIEKEKJJMFKEKEKWBRAUNQJU-KBYGBglobal-10 ...