[BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布
Time Limit: 50 Sec Memory Limit: 64 MB
Submit: 1635 Solved: 728
[Submit][Status][Discuss]Description
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。Input
Output
Sample Input
10 19Sample Output
3HINT
【约束条件】1 ≤ a ≤ b ≤ 10^18
Source
设计好状态后就是比较简单的数位DP了,实际上数位DP就是记录了中间状态的搜索。
首先枚举各个位上的数之和为mod,然后它的贡献是所有数位和为mod且这个数本身%mod=0的数的个数,设f[i][sm][md]表示考虑从高到低前i位,前i位的数位和为sm,数本身%mod=md的数的合法个数,最终贡献为f[len][0][0]。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (ll i=l; i<=r; i++)
typedef long long ll;
using namespace std; ll L,R,ans,mod,a[21],P[21],f[21][170][170]; ll dfs(ll x,ll sm,ll md,ll lim){
if (!x) return (sm==mod) && !md;
if (!lim && ~f[x][sm][md]) return f[x][sm][md];
ll res=0;
rep(j,0,(lim?a[x]:9)) res+=dfs(x-1,sm+j,(j*P[x-1]+md)%mod,lim && j==a[x]);
if (!lim) f[x][sm][md]=res;
return res;
} ll calc(ll n){
if (!n) return 0;
memset(f,-1,sizeof(f));
P[0]=1; rep(i,1,18) P[i]=(P[i-1]*10)%mod;
ll len=0; while (n) a[++len]=n%10,n/=10;
return dfs(len,0,0,1);
} int main(){
freopen("bzoj1799.in","r",stdin);
freopen("bzoj1799.out","w",stdout);
scanf("%lld%lld",&L,&R);
for (mod=1; mod<=162; mod++) ans+=calc(R)-calc(L-1);
printf("%lld\n",ans);
return 0;
}
[BZOJ1799][AHOI2009]同类分布(数位DP)的更多相关文章
- BZOJ1799 self 同类分布 数位dp
BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- bzoj1799同类分布——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...
- BZOJ 1799 同类分布(数位DP)
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
随机推荐
- JavaScript中innerText和innerHTML的区别
案例 <html> <head> <meta http-equiv="Content-Type" content="text/html;ch ...
- 【leetcode 简单】第四十九题 颠倒二进制位
颠倒给定的 32 位无符号整数的二进制位. 示例: 输入: 43261596 输出: 964176192 解释: 43261596 的二进制表示形式为 000000101001010000011110 ...
- 天梯赛 L2-006 树的遍历 (二叉树)
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(<=30),是二叉树中结点的个数.第二行给出其后序遍历序 ...
- [整理] magento搬家
将原来网站文件中的var文件中的cache和session文件删除,将media中的缓存文件删除.然后将所有文件制作成一个压缩包,以减少文件体积,方便转移. 将压缩包转移到新的服务器域名指向的文件夹, ...
- VC孙鑫老师第八课:你能捉到我吗?
第一步,首先在对话框窗口上放上两个一模一样的按钮控件 第二步,由于是按钮响应鼠标移动上去的事件,因此需要重新派生按钮类: 第三步,在窗口类中声明并使用自定义按钮对象(记得在窗口类中包含自定义按钮类的头 ...
- JSON与JS的区别以及转换
JSON是什么?(JSON和JavaScript对象有什么区别?)如何把JS对象转化为JSON字符串,又如何把JSON字符串转化为JavaScript对象? JSON (JavaScript Obje ...
- Ubuntu 17.10 用 apt 搭建 lamp 环境(精简版)
这篇文章主要用来快速部署以 php 5.6 为主的 lamp 环境,要看详细安装包括虚拟主机配置的请参考这篇:http://www.cnblogs.com/mingc/p/7864030.html 一 ...
- [MySQL] gap lock/next-key lock浅析
当InnoDB在判断行锁是否冲突的时候, 除了最基本的IS/IX/S/X锁的冲突判断意外, InnoDB还将锁细分为如下几种子类型: record lock (RK) 记录锁, 仅仅锁住索引记录的一行 ...
- 实现UE添加自定义按钮之添加菜单
1.ueditor.config.js配置文件中配置 2.在ueditor.all.js配置文件中配置点开的的弹框位置 3.在ueditor1_4_3-utf8-jsp\themes\default\ ...
- 使用navicat for sqlserver 把excel中的数据导入到sqlserver数据库
以前记得使用excel向mysql中导入过数据,今天使用excel向sqlserver2005导入了数据,在此把做法记录一下 第一步:准备excel数据,在这个excel中有3个sheet,每个she ...