转载自:AriesSurfer

原文见 http://blog.csdn.NET/acdreamers/article/details/27365941

Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多

变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是

否患有某种病。

在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。

在分类情形下,经过学习后的LR分类器是一组权值,当测试样本的数据输入时,这组权值与测试数据按

照线性加和得到

这里是每个样本的个特征。

之后按照sigmoid函数的形式求出

由于sigmoid函数的定义域为,值域为,因此最基本的LR分类器适合对两类目标进行分类。

所以Logistic回归最关键的问题就是研究如何求得这组权值。这个问题是用极大似然估计来做的。

下面正式地来讲Logistic回归模型。

考虑具有个独立变量的向量,设条件慨率为根据观测量相对于某事件发生的

概率。那么Logistic回归模型可以表示为

这里称为Logistic函数。其中

那么在条件下不发生的概率为

所以事件发生与不发生的概率之比为

这个比值称为事件的发生比(the odds of experiencing an event),简记为odds。

对odds取对数得到

可以看出Logistic回归都是围绕一个Logistic函数来展开的。接下来就讲如何用极大似然估计求分类器的参数。

假设有个观测样本,观测值分别为,设为给定条件下得到的概率,同样地,

的概率为,所以得到一个观测值的概率为

因为各个观测样本之间相互独立,那么它们的联合分布为各边缘分布的乘积。得到似然函数为

然后我们的目标是求出使这一似然函数的值最大的参数估计,最大似然估计就是求出参数,使得

取得最大值,对函数取对数得到

继续对这分别求偏导,得到个方程,比如现在对参数求偏导,由于

所以得到

这样的方程一共有个,所以现在的问题转化为解这个方程形成的方程组。

上述方程比较复杂,一般方法似乎不能解之,所以我们引用了牛顿-拉菲森迭代方法求解。

利用牛顿迭代求多元函数的最值问题以后再讲。。。

简单牛顿迭代法:http://zh.m.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95

实际上在上述似然函数求最大值时,可以用梯度上升算法,一直迭代下去。梯度上升算法和牛顿迭代相比,收敛速度

慢,因为梯度上升算法是一阶收敛,而牛顿迭代属于二阶收敛。

转载:Logistic回归原理及公式推导的更多相关文章

  1. Logistic回归原理及公式推导[转]

    原文见 http://blog.csdn.net/acdreamers/article/details/27365941 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素 ...

  2. 机器学习(1):Logistic回归原理及其实现

    Logistic回归是机器学习中非常经典的一个方法,主要用于解决二分类问题,它是多分类问题softmax的基础,而softmax在深度学习中的网络后端做为常用的分类器,接下来我们将从原理和实现来阐述该 ...

  3. logistic回归原理和公式

    转自:http://blog.csdn.net/ariessurfer/article/details/41310525 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素 ...

  4. 转载-Logistic回归总结

     Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regress ...

  5. Logistic 回归-原理及应用

    公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇文章介绍了线性回归模型,它用于处理回归问题. 这次来介绍一下 Logistic 回归,中文音译为逻辑回归 ...

  6. 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有

    本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...

  7. logistic回归和线性回归

    1.输出: 线性回归输出是连续的.具体的值(如具体房价123万元) 回归 逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题 分类 2.假设函数 线性回归: ...

  8. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  9. 【机器学习实战】第5章 Logistic回归(逻辑回归)

    第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

随机推荐

  1. 【BZOJ3555】企鹅QQ(字符串哈希)

    [BZOJ3555]企鹅QQ(字符串哈希) 题面 BZOJ 题解 把前缀哈希一下,后缀哈希一下 枚举哪个位置不选,然后检查一下相同就行了.. 为什么我的\(Hash\)老是\(WA\), 为什么\(Z ...

  2. [HNOI2002]跳蚤 【容斥】

    题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最 ...

  3. 洛谷P1195 口袋的天空

    口袋的天空 327通过 749提交 题目提供者该用户不存在 标签云端 难度普及+/提高 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 暂时没有讨论 题目背景 小杉坐在教室里,透 ...

  4. Kubernetes - Deploy Containers Using YAML

    In this scenario, you'll learn how to use Kubectl to create and launch Deployments, Replication Cont ...

  5. 前端PHP入门-024-字符串函数-API查看

    数组.字符串和数据库是我们函数里面最.最.最常用的三类函数,数组和数据库我们现在还没有讲到,等讲到的时候我们再来和大家细说. 当然PHP的字符串函数也有很多.我们最常使用的两个系列的字符串: 单字节字 ...

  6. pthread在Qt+Windows下的使用

    pthread是牛逼的跨平台线程库,无需多介绍. 下载pthread-win32,解压后将x86里的pthreadVC2.dll放到system32目录里,将pthreadVC2.lib放入项目中去, ...

  7. OpenCV---模板匹配matchTemplate

    作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性 模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是 ...

  8. 2015/9/21 Python基础(17):绑定和方法调用

    绑定和方法调用现在我们需要再次阐述Python中绑定(binding)的概念,它主要与方法调用相关联.方法是类内部定义的函数,这意味着方法是类属性而不是实例属性.其次,方法只有在其所属的类拥有实例时, ...

  9. HTML入门(二)表格_字体_超链接_布局

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. Python学习笔记(二十)调试

    摘抄自: https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143191557 ...