转载:Logistic回归原理及公式推导
转载自:AriesSurfer
原文见 http://blog.csdn.NET/acdreamers/article/details/27365941
Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素
之间关系的一种多
变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是
否患有某种病。
在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。
在分类情形下,经过学习后的LR分类器是一组权值,当测试样本的数据输入时,这组权值与测试数据按
照线性加和得到
这里是每个样本的
个特征。
之后按照sigmoid函数的形式求出
由于sigmoid函数的定义域为,值域为
,因此最基本的LR分类器适合对两类目标进行分类。
所以Logistic回归最关键的问题就是研究如何求得这组权值。这个问题是用极大似然估计来做的。
下面正式地来讲Logistic回归模型。
考虑具有个独立变量的向量
,设条件慨率
为根据观测量相对于某事件
发生的
概率。那么Logistic回归模型可以表示为
这里称为Logistic函数。其中
那么在条件下
不发生的概率为
所以事件发生与不发生的概率之比为
这个比值称为事件的发生比(the odds of experiencing an event),简记为odds。
对odds取对数得到
可以看出Logistic回归都是围绕一个Logistic函数来展开的。接下来就讲如何用极大似然估计求分类器的参数。
假设有个观测样本,观测值分别为
,设
为给定条件下得到
的概率,同样地,
的概率为
,所以得到一个观测值的概率为
。
因为各个观测样本之间相互独立,那么它们的联合分布为各边缘分布的乘积。得到似然函数为
然后我们的目标是求出使这一似然函数的值最大的参数估计,最大似然估计就是求出参数,使得
取得最大值,对函数取对数得到
继续对这个
分别求偏导,得到
个方程,比如现在对参数
求偏导,由于
所以得到
这样的方程一共有个,所以现在的问题转化为解这
个方程形成的方程组。
上述方程比较复杂,一般方法似乎不能解之,所以我们引用了牛顿-拉菲森迭代方法求解。
利用牛顿迭代求多元函数的最值问题以后再讲。。。
简单牛顿迭代法:http://zh.m.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95
实际上在上述似然函数求最大值时,可以用梯度上升算法,一直迭代下去。梯度上升算法和牛顿迭代相比,收敛速度
慢,因为梯度上升算法是一阶收敛,而牛顿迭代属于二阶收敛。
转载:Logistic回归原理及公式推导的更多相关文章
- Logistic回归原理及公式推导[转]
原文见 http://blog.csdn.net/acdreamers/article/details/27365941 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素 ...
- 机器学习(1):Logistic回归原理及其实现
Logistic回归是机器学习中非常经典的一个方法,主要用于解决二分类问题,它是多分类问题softmax的基础,而softmax在深度学习中的网络后端做为常用的分类器,接下来我们将从原理和实现来阐述该 ...
- logistic回归原理和公式
转自:http://blog.csdn.net/ariessurfer/article/details/41310525 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素 ...
- 转载-Logistic回归总结
Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regress ...
- Logistic 回归-原理及应用
公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇文章介绍了线性回归模型,它用于处理回归问题. 这次来介绍一下 Logistic 回归,中文音译为逻辑回归 ...
- 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有
本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...
- logistic回归和线性回归
1.输出: 线性回归输出是连续的.具体的值(如具体房价123万元) 回归 逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题 分类 2.假设函数 线性回归: ...
- 【机器学习实战】第5章 Logistic回归
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...
- 【机器学习实战】第5章 Logistic回归(逻辑回归)
第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...
随机推荐
- 洛谷 P1278 单词游戏 【状压dp】
题目描述 Io和Ao在玩一个单词游戏. 他们轮流说出一个仅包含元音字母的单词,并且后一个单词的第一个字母必须与前一个单词的最后一个字母一致. 游戏可以从任何一个单词开始. 任何单词禁止说两遍,游戏中只 ...
- eclipse show view失效的解决办法
今天打开eclipse,发现console窗口没有了,然后使用show view也无法打开,上网查找办法,找到了方法试了一下,窗口重置(Windows-->Perspective-->Re ...
- NYOJ--703
原题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=703 分析:先考虑不受限制的情况,此时共可以修n*(n-1)/2条隧道:所有的place组 ...
- Codeforces Global Round 2 题解
Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...
- centos 前端环境搭建
Node.js 安装 wget 下载安装 yum -y install gcc make gcc-c++ openssl-devel wget node v6.11.0 下载 wget https:/ ...
- duilib CDateTimeUI 在Xp下的bug修复
转自:http://my.oschina.net/u/343244/blog/370131 CDateTimeUI 的bug修复.修改CDateTimeWnd的HandleMessage方法 ? 1 ...
- Android 加载网络图片设置到ImageView
下载图片后显示在ImageView中 //1.定义全局变量 private Handler handler; private String image_url; private Bitmap bitm ...
- PHP扩展开发--01.编写一个helloWorld扩展
为什么要用C扩展 C是静态编译的,执行效率比PHP代码高很多.同样的运算代码,使用C来开发,性能会比PHP要提升数百倍. 另外C扩展是在进程启动时加载的,PHP代码只能操作Request生命周期的数据 ...
- Let's Encrypt 免费通配 https 签名证书 安装方法
安装环境 centOs7 主要通过 acme.sh (bash脚本)来注册签名 git地址:https://github.com/Neilpang/acme.sh 申请证书流程 1.申请证书-> ...
- js学习阶段总结
typeof操作符:返回字符串,可能是“undefined”,“boolean”,“ string”,“number”,“object”,“function”中的一种,所以不能判断数组. NaN(No ...