欧拉回路&欧拉通路判断
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次,
称这条回路为欧拉回路。具有欧拉回路的图成为欧拉图。
判断欧拉通路是否存在的方法
有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。
无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。
判断欧拉回路是否存在的方法
有向图:图连通,所有的顶点出度=入度。
无向图:图连通,所有顶点都是偶数度。
程序实现一般是如下过程:
1.利用并查集判断图是否连通,即判断p[i] < 0的个数,如果大于1,说明不连通。
2.根据出度入度个数,判断是否满足要求。
3.利用dfs输出路径(套圈法)。
欧拉回路&欧拉通路判断的更多相关文章
- hdu1116有向图判断欧拉通路判断
Play on Words Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- poj2513- Colored Sticks 字典树+欧拉通路判断
题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...
- POJ 1300 欧拉通路&欧拉回路
系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...
- HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路
给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...
- ACM/ICPC 之 DFS求解欧拉通路路径(POJ2337)
判断是欧拉通路后,DFS简单剪枝求解字典序最小的欧拉通路路径 //Time:16Ms Memory:228K #include<iostream> #include<cstring& ...
- Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash
题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点 或者 ...
- POJ 2513 无向欧拉通路+字典树+并查集
题目大意: 有一堆头尾均有颜色的木条,要让它们拼接在一起,拼接处颜色要保证相同,问是否能够实现 这道题我一开始利用map<string,int>来对颜色进行赋值,好进行后面的并查操作以及欧 ...
- poj 2513 连接火柴 字典树+欧拉通路 好题
Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27134 Accepted: 7186 ...
- POJ2513Colored Sticks(欧拉通路)(字典树)(并查集)
Colored Sticks Time Limit: 5000MS Memory ...
随机推荐
- Jsp遍历后台传过来的List
1:使用jstl标签 (可以和自定义标签配合使用) 首先引用jstl标签 <%@ taglib uri="http://java.sun.com/jsp/jstl/core" ...
- 【WPF】PopupColorEdit 的使用
一.前言 PopupColorEdit 是 dev中一个常用的调色盘控件,它的Color属性返回的是一个System.Windows.Media.Color对象,而不是System.Dr ...
- 【CF438E】The Child and Binary Tree(多项式运算,生成函数)
[CF438E]The Child and Binary Tree(多项式运算,生成函数) 题面 有一个大小为\(n\)的集合\(S\) 问所有点权都在集合中,并且点权之和分别为\([0,m]\)的二 ...
- 框架----Django框架知识点整理
一.cbv cbv(class-base-view) 基于类的视图 fbv(func-base-view) 基于函数的视图 a.基本演示 urlpatterns = [ url(r'^login.ht ...
- poj2373 Dividing the Path
Dividing the Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5060 Accepted: 1782 ...
- UVA-10375 数学
UVA-10375 题意 : 输入p,q,r,s,求C(p,q)/C(r,s). p,q,r,s<=10000:结果不超过1e8 代码: //显然不能直接计算,考虑每个数都可以由若干个素数乘积得 ...
- 14.Android UiAutomator 图像处理
一.BitMap介绍 1.图像使用场景 1)效果类截图 2)不可见的组件图像对比 3)失败与异常截图 4)利用图像判断组件 2.部分API简单说明 API 说明 compress 压缩图片 copy ...
- BFC 块级元素格式化上下文
Block Formatting Contexts: 块级元素格式化上下文块级元素如何对它的内容(子元素:也是一个块元素)进行布局,以及与其它元素(与内容同级别)的关系和相互作用 普通文档流的布局规则 ...
- JAVA类与对象---实例变量与类变量的区别,实例方法和类方法的区别
实例变量 实例变量声明在一个类中,但在方法.构造方法和语句块之外: 当一个对象被实例化之后,每个实例变量的值就跟着确定: 实例变量在对象创建的时候创建,在对象被销毁的时候销毁: 实例变量的值应该至少被 ...
- Jeson老师写的nginx切割脚本
#Jeson #Email:jeson@iaskjob.com #变量定义:access.error日志文件列表 NGINX_LOG=(imoocc_com_access iaskjob_com er ...