Linux进程的创建函数fork()及其fork内核实现解析【转】
转自:http://www.cnblogs.com/zengyiwen/p/5755193.html
#include <unistd.h>
pid_t fork(void);
/proc/sys/kernel/sched_child_runs_first
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <wait.h>
int g_int = 1;//数据段的全局变量
int main()
{
int local_int = 1;//栈上的局部变量
int *malloc_int = malloc(sizeof(int));//通过malloc动态分配在堆上的变量
*malloc_int = 1;
pid_t pid = fork();
if(pid == 0) /*子进程*/
{
local_int = 0;
g_int = 0;
*malloc_int = 0;
fprintf(stderr,"[CHILD ] child change local global malloc value to 0\n");
free(malloc_int);
sleep(10);
fprintf(stderr,"[CHILD ] child exit\n");
exit(0);
}
else if(pid < 0)
{
printf("fork failed (%s)",strerror(errno));
return 1;
}
fprintf(stderr,"[PARENT] wait child exit\n");
waitpid(pid,NULL,0);
fprintf(stderr,"[PARENT] child have exit\n");
printf("[PARENT] g_int = %d\n",g_int);
printf("[PARENT] local_int = %d\n",local_int);
printf("[PARENT] malloc_int = %d\n",local_int);
free(malloc_int);
return 0;
}
[PARENT] wait child exit
[CHILD ] child change local global malloc value to 0
[CHILD ] child exit
[PARENT] child have exit
[PARENT] g_int = 1
[PARENT] local_int = 1
[PARENT] malloc_int = 1

/*如果是写时拷贝, 那么无论是初始页表, 还是拷贝的页表, 都设置了写保护
*后面无论父子进程, 修改页表对应位置的内存时, 都会触发page fault
*/
if (is_cow_mapping(vm_flags)) {
ptep_set_wrprotect(src_mm, addr, src_pte);//设置为写保护
pte = pte_wrprotect(pte);
}

struct task_struct {
...struct files_struct *files;...
}
static int copy_files(unsigned long clone_flags,
struct task_struct *tsk)
{
struct files_struct *oldf, *newf;
int error = 0;
oldf = current->files;//获取父进程的文件结构体
if (!oldf)
goto out;
/*创建线程和vfork, 都不用复制父进程的文件描述符, 增加引用计数即可*/
if (clone_flags & CLONE_FILES) {
atomic_inc(&oldf->count);
goto out;
}
/*对于fork而言, 需要复制父进程的文件描述符*/
newf = dup_fd(oldf, &error); //复制一份文件描述符
if (!newf)
goto out;
tsk->files = newf;
error = 0;
out:
return error;
}
struct files_struct *dup_fd(struct files_struct *oldf,
int *errorp)
{
struct files_struct *newf;
struct file **old_fds, **new_fds;
int open_files, size, i;
struct fdtable *old_fdt, *new_fdt;
*errorp = -ENOMEM;
newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
if (!newf)
goto out;
struct files_struct {
atomic_t count;
struct fdtable __rcu *fdt;
struct fdtable fdtab;
spinlock_t file_lock ____cacheline_aligned_in_smp;
int next_fd;
struct embedded_fd_set close_on_exec_init;
struct embedded_fd_set open_fds_init;
struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};
struct fdtable //文件描述符表
{
unsigned int max_fds;
struct file __rcu **fd; /* current fd array */
fd_set *close_on_exec;
fd_set *open_fds;
struct rcu_head rcu;
struct fdtable *next;
};
struct embedded_fd_set {
unsigned long fds_bits[1];
};
file类型指针的数组fd_array,也自带了两个大小为64的位图,其中open_fds_init位图用于记录文件的打开情况,close_on_exec_init位图用于记录文件描述符的FD_CLOSEXCE标志位是否置位。只要进程打开的文件个数小于64,file_struct结构体自带的指针数组和两个位图就足以满足需要。因此在分配了file_struct结构体后,内核会初始化file_struct自带的fdtable,代码如下所示:
atomic_set(&newf->count, 1);
spin_lock_init(&newf->file_lock);
newf->next_fd = 0;
new_fdt = &newf->fdtab;
new_fdt->max_fds = NR_OPEN_DEFAULT;
new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
new_fdt->fd = &newf->fd_array[0];
new_fdt->next = NULL;

spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
open_files = count_open_files(old_fdt);
/*如果父进程打开文件的个数超过NR_OPEN_DEFAULT*/
while (unlikely(open_files > new_fdt->max_fds)) {
spin_unlock(&oldf->file_lock); /* 如果不是自带的fdtable而是曾经分配的fdtable, 则需要先释放*/
if (new_fdt != &newf->fdtab)
__free_fdtable(new_fdt);
/*创建新的fdtable*/
new_fdt = alloc_fdtable(open_files - 1);
if (!new_fdt) {
*errorp = -ENOMEM;
goto out_release;
}
/*如果超出了系统限制, 则返回EMFILE*/
if (unlikely(new_fdt->max_fds < open_files)) {
__free_fdtable(new_fdt);
*errorp = -EMFILE;
goto out_release;
}
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
open_files = count_open_files(old_fdt);
}
old_fds = old_fdt->fd;
/*父进程的struct file 指针数组*/- new_fds = new_fdt->fd; /*子进程的struct file 指针数组*/
- /* 拷贝打开文件位图 */
- memcpy(new_fdt->open_fds->fds_bits,old_fdt->open_fds->fds_bits, open_files/8);
- /* 拷贝 close_on_exec位图 */
- memcpy(new_fdt->close_on_exec->fds_bits,old_fdt->close_on_exec->fds_bits, open_files/8);
- for (i = open_files; i != 0; i--) {
- struct file *f = *old_fds++;
- if (f) {
- get_file(f); /* f对应的文件的引用计数加1 */
- } else {
- FD_CLR(open_files - i, new_fdt->open_fds);
- }
- /* 子进程的struct file类型指针, *指向和父进程相同的struct file 结构体*/
- rcu_assign_pointer(*new_fds++, f);
- }
- spin_unlock(&oldf->file_lock);/* compute the remainder to be cleared */
- size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
- /*将尚未分配到的struct file结构的指针清零*/
- memset(new_fds, 0, size);/*将尚未分配到的位图区域清零*/
- if (new_fdt->max_fds > open_files) {
- int left = (new_fdt->max_fds-open_files)/8;
- int start = open_files / (8 * sizeof(unsigned long));
memset(&new_fdt->open_fds->fds_bits[start], 0, left);
memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
}
rcu_assign_pointer(newf->fdt, new_fdt);
return newf;
out_release:
kmem_cache_free(files_cachep, newf);
out:
return NULL;
}

#include<stdio.h>
#include <stdlib.h>
#include <unistd.h>
int glob = 88 ;
int main(void) {
int var;
var = 88;
pid_t pid;
if ((pid = vfork()) < 0) {
printf("vfork error");
exit(-1);
} else if (pid == 0) { /* 子进程 */
var++;
glob++;
return 0;
}printf("pid=%d, glob=%d, var=%d\n",getpid(), glob, var);
return 0;
}
Linux进程的创建函数fork()及其fork内核实现解析【转】的更多相关文章
- Linux进程的创建函数fork()及其fork内核实现解析
进程的创建之fork() Linux系统下,进程可以调用fork函数来创建新的进程.调用进程为父进程,被创建的进程为子进程. fork函数的接口定义如下: #include <unistd.h& ...
- linux 进程的创建
1. 进程号: 每个进程在被初始化的时候,系统都会为其分配一个唯一标识的进程id,称为进程号: 进程号的类型为pid_t,通过getpid()和getppid()可以获取当前进程号和当前进程的父进程的 ...
- linux进程学习-创建新进程
init进程将系统启动后,init将成为此后所有进程的祖先,此后的进程都是直接或间接从init进程“复制”而来.完成该“复制”功能的函数有fork()和clone()等. 一个进程(父进程)调用for ...
- linux进程解析--进程的创建
通常我们在代码中调用fork()来创建一个进程或者调用pthread_create()来创建一个线程,创建一个进程需要为其分配内存资源,文件资源,时间片资源等,在这里来描述一下linux进程的创建过程 ...
- Linux进程-进程的创建
今天学习了Linux的进程创建的基本原理,是基于0.11版本核心的.下面对其作一下简单的总结. 一.Linux进程在内存中的相关资源 很容易理解,Linux进程的创建过程就是内存中进程相关资源产生 ...
- Linux 进程,线程,线程池
在linux内核,线程与进程的区别很小,或者说内核并没有真正所谓单独的线程的概念,进程的创建函数是fork,而线程的创建是通过clone实现的. 而clone与fork都是调用do_fork(),差异 ...
- 撸代码--linux进程通信(基于共享内存)
1.实现亲缘关系进程的通信,父写子读 思路分析:1)首先我们须要创建一个共享内存. 2)父子进程的创建要用到fork函数.fork函数创建后,两个进程分别独立的执行. 3)父进程完毕写的内容.同一时候 ...
- Operating System-Process(1)什么是进程&&进程的创建(Creation)&&进程的终止(Termination)&&进程的状态(State)
本文阐述操作系统的核心概念之一:进程(Process),主要内容: 什么是进程 进程的创建(Creation) 进程的终止(Termination) 进程的状态(State) 一.什么是进程 1.1 ...
- 通过fork函数创建进程的跟踪,分析linux内核进程的创建
作者:吴乐 山东师范大学 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.实验过程 1.打开gdb, ...
随机推荐
- 【数据库】SQL分组多列统计(GROUP BY后按条件分列统计)
select whbmbh ,zt,1 as tjsl from fyxx group by zt,whbmbh select whbmbh,sum(case zt when '有效' then 1 ...
- ZJOI2012网络 题解报告【LCT】
题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环,同色的环指相同颜色的边构成的环. 在这 ...
- 洛谷 P3398 仓鼠找sugar 解题报告
P3398 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...
- HDU.1689 Just a Hook (线段树 区间替换 区间总和)
HDU.1689 Just a Hook (线段树 区间替换 区间总和) 题意分析 一开始叶子节点均为1,操作为将[L,R]区间全部替换成C,求总区间[1,N]和 线段树维护区间和 . 建树的时候初始 ...
- Java试题二
QUESTION 37Given:1. class Super {2. private int a;3. protected Super(int a) { this.a = a; }4. } ...1 ...
- 虚拟机安装ubuntu14.04.5系统
参考教程 在vitualbox安装 ubuntu14.04.2 LTS教程 http://jingyan.baidu.com/article/46650658228345f549e5f8cc.html ...
- 【OpenCV】SIFT原理与源码分析:关键点描述
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...
- STL源码分析-traits
http://note.youdao.com/noteshare?id=b5fd9f936cd133af3790a8b0e9c35b8a
- jni里找不到刚添加的C++函数
使用NDK开发,用到了JNI来连接C++和JAVA. 当C++方增加了一个新函数,jni访问此函数,eclipse会提示找不到改函数,然后前面打个红叉叉表示语法错误,从而阻碍了编译和运行. 当我选择清 ...
- centos7下安装mysql5.7.24
第一步:下载rpm包 sudo wget http://repo.mysql.com/yum/mysql-5.7-community/el/7/x86_64/mysql57-community-rel ...