github地址

  1 #!/usr/bin/env python2
2 # -*- coding: utf-8 -*-
3 """
4 Created on Sat Mar 31 21:19:09 2018
5
6 @author: hello4720
7 """
8 import numpy as np
9 import pandas as pd
10 import lightgbm as lgb
11 from sklearn import metrics
12 from sklearn.model_selection import train_test_split
13
14 ### 读取数据
15 print("载入数据")
16 dataset1 = pd.read_csv('G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data1.csv')
17 dataset2 = pd.read_csv('G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data2.csv')
18 dataset3 = pd.read_csv('G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data3.csv')
19 dataset4 = pd.read_csv('G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data4.csv')
20 dataset5 = pd.read_csv('G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data5.csv')
21
22 dataset1.drop_duplicates(inplace=True)
23 dataset2.drop_duplicates(inplace=True)
24 dataset3.drop_duplicates(inplace=True)
25 dataset4.drop_duplicates(inplace=True)
26 dataset5.drop_duplicates(inplace=True)
27
28 ### 数据合并
29 print("数据合并")
30 trains = pd.concat([dataset1,dataset2],axis=0)
31 trains = pd.concat([trains,dataset3],axis=0)
32 trains = pd.concat([trains,dataset4],axis=0)
33
34 online_test = dataset5
35
36 ### 数据拆分
37 print("数据拆分")
38 train_xy,offline_test = train_test_split(trains, test_size = 0.2,random_state=21)
39 train,val = train_test_split(train_xy, test_size = 0.2,random_state=21)
40
41 print("训练集")
42 y = train.is_trade # 训练集标签
43 X = train.drop(['instance_id','is_trade'],axis=1) # 训练集特征矩阵
44
45 print("验证集")
46 val_y = val.is_trade # 验证集标签
47 val_X = val.drop(['instance_id','is_trade'],axis=1) # 验证集特征矩阵
48
49 print("测试集")
50 offline_test_X=offline_test.drop(['instance_id','is_trade'],axis=1) # 线下测试特征矩阵
51 online_test_X=online_test.drop(['instance_id'],axis=1) # 线上测试特征矩阵
52
53 ### 数据转换
54 lgb_train = lgb.Dataset(X, y, free_raw_data=False)
55 lgb_eval = lgb.Dataset(val_X, val_y, reference=lgb_train,free_raw_data=False)
56
57 ### 开始训练
58 print('设置参数')
59 params = {
60 'boosting_type': 'gbdt',
61 'boosting': 'dart',
62 'objective': 'binary',
63 'metric': 'binary_logloss',
64
65 'learning_rate': 0.01,
66 'num_leaves':25,
67 'max_depth':3,
68
69 'max_bin':10,
70 'min_data_in_leaf':8,
71
72 'feature_fraction': 0.6,
73 'bagging_fraction': 1,
74 'bagging_freq':0,
75
76 'lambda_l1': 0,
77 'lambda_l2': 0,
78 'min_split_gain': 0
79 }
80
81 print("开始训练")
82 gbm = lgb.train(params, # 参数字典
83 lgb_train, # 训练集
84 num_boost_round=2000, # 迭代次数
85 valid_sets=lgb_eval, # 验证集
86 early_stopping_rounds=30) # 早停系数
87 ### 线下预测
88 print ("线下预测")
89 preds_offline = gbm.predict(offline_test_X, num_iteration=gbm.best_iteration) # 输出概率
90 offline=offline_test[['instance_id','is_trade']]
91 offline['preds']=preds_offline
92 offline.is_trade = offline['is_trade'].astype(np.float64)
93 print('log_loss', metrics.log_loss(offline.is_trade, offline.preds))
94
95 ### 线上预测
96 print("线上预测")
97 preds_online = gbm.predict(online_test_X, num_iteration=gbm.best_iteration) # 输出概率
98 online=online_test[['instance_id']]
99 online['preds']=preds_online
100 online.rename(columns={'preds':'predicted_score'},inplace=True)
101 online.to_csv("./data/20180405.txt",index=None,sep=' ')
102
103 ### 保存模型
104 from sklearn.externals import joblib
105 joblib.dump(gbm,'gbm.pkl')
106
107 ### 特征选择
108 df = pd.DataFrame(X.columns.tolist(), columns=['feature'])
109 df['importance']=list(gbm.feature_importance())
110 df = df.sort_values(by='importance',ascending=False)
111 df.to_csv("./data/feature_score_20180405.csv",index=None,encoding='gbk')

【集成学习】lightgbm使用案例的更多相关文章

  1. 笔记︱集成学习Ensemble Learning与树模型、Bagging 和 Boosting

    本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树 ...

  2. 使用sklearn进行集成学习——实践

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...

  3. [转]使用sklearn进行集成学习——实践

    转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...

  4. 集成学习之Boosting —— AdaBoost原理

    集成学习大致可分为两大类:Bagging和Boosting.Bagging一般使用强学习器,其个体学习器之间不存在强依赖关系,容易并行.Boosting则使用弱分类器,其个体学习器之间存在强依赖关系, ...

  5. 集成学习算法汇总----Boosting和Bagging(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  6. 集成学习二: Boosting

    目录 集成学习二: Boosting 引言 Adaboost Adaboost 算法 前向分步算法 前向分步算法 Boosting Tree 回归树 提升回归树 Gradient Boosting 参 ...

  7. 6. 集成学习(Ensemble Learning)算法比较

    1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...

  8. 3. 集成学习(Ensemble Learning)随机森林(Random Forest)

    1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...

  9. 集成学习之Boosting —— XGBoost

    集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boost ...

  10. 集成学习之Boosting —— Gradient Boosting原理

    集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...

随机推荐

  1. 最短路径 bellman-ford

    初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离:(运行|v ...

  2. Jenkins Pipeline shell脚本用svn_revision当做系统版本号

    1. 使用dir命令,进入发布目录,版本号所在文件夹. 2. 使用sed命令 修改替换版本号,这里使用vvvv作为要替换的版本号. 3. 最后一步可以不加.只是方便查看效果. stage(" ...

  3. GridControl 史上最全的资料(一)

    GridControl详解(一)原汁原味的表格展示 Dev控件中的表格控件GridControl控件非常强大.不过,一些细枝末节的地方有时候用起来不好找挺讨厌的.使用过程中,多半借助Demo和英文帮助 ...

  4. try throw catch typeid

    QString str = ui.ll->text(); try { if (str == NULL) { throw 1; } else { throw 1.2; } } catch (int ...

  5. 百度编辑器(ueditor)@功能之获取坐标

    //获取百度编辑器的工具类 var domUtils = UE.dom.domUtils; //获取编辑器的坐标 var $ueditor_offset = $("#ueditor_0&qu ...

  6. 【Linux】使用awk批量杀进程

    pkill 杀一个用户的所有进程 pkill -u bingo 批量杀进程 使用ps -ef|grep aaa 查出相关进程 使用grep -v grep 过滤掉grep本身产生的进程 使用awk 打 ...

  7. Sql字符串操作函数

    1.去空格函数 (1).LTRIM() 把字符串头部的空格去掉. (2).RTRIM() 把字符串尾部的空格去掉. 2.字符转换函数(1).ASCII()返回字符表达式最左端字符的ASCII 码值.在 ...

  8. jquery中的工具方法$.isFunction, $.isArray(), $.isWindow()

    本文正式地址:http://www.xiabingbao.com/jquery/2015/07/25/jquery-judge-type 在javascript中对变量类型的判断中,我们讲解了了jqu ...

  9. 谈一谈最近关闭的Kindle人论坛

    最近Kindle圈子内最大的论坛“Kindle人”关闭了,倒也掀起了一阵小波澜.Kindle人论坛是K友圈子里比较著名的一个“Kindle资源分享论坛”,这么一说其实混了这么久网络,大家都知道这个论坛 ...

  10. JSP XML 数据处理

    JSP XML 数据处理 当通过HTTP发送XML数据时,就有必要使用JSP来处理传入和流出的XML文档了,比如RSS文档.作为一个XML文档,它仅仅只是一堆文本而已,使用JSP创建XML文档并不比创 ...