题目大意

顾客拿着N种硬币(币值为value[i], 数量为c[i])去买价值为T的东西,商店老板也有同样N种币值的硬币,但是数量不限。顾客买东西可能需要用硬币找零来使得花出去的钱为T,求顾客给老板的硬币数为count1,老板找回给顾客的硬币数目为count2,求count1 + count2的最小值。

题目分析

先通过求和得到顾客的总钱数,若小于T,则说明无法进行交换,直接返回-1;否则,可以进行交换,那么顾客给老板的总钱数V1肯定>=T, 而老板找回给顾客的总钱数为 V1 - T. 
    用顾客手上的硬币去凑成V1的钱,为多重背包问题,通过转换为01背包来解决。这样可以求得 f1[V1] 表示用顾客手上的硬币凑成价值为V1的钱的硬币的最小数目;用老板手上的硬币去凑成V2的钱,为一个完全背包问题,利用完全背包来解决,得到f2[V2]表示用老板手上的硬币凑成价值为V2的钱的硬币的最小数目。 
    然后对V1进行遍历,找到V1-V2 = T,且f[V1]+f[V2]最小的f[V1]+f[V2]即可。 
    需要注意的是初始化

实现(c++)

#define _CRT_SECURE_NO_WARNINGS
//思路是 将要付的钱t 表示成 s1 - s2的形式,其中s1为顾客要给老板的钱数;s2为老板找回的钱数
//s1 >= t,否则无效
//两个dp数组f1, f2,其中 f1[i] 表示 顾客用身上的硬币凑成 i元所消耗的最少硬币数目
//f2[i] 表示老板要找i元所消耗的最少硬币数目
//由于顾客硬币数目有限制,为01背包; 老板硬币数目无限制,为完全背包 #include<stdio.h>
#include<string.h>
#define MAX_CENTS 20200
#define COIN_TYPE_NUM 102
#define INFINITE 1 << 28
int gCoinValue[MAX_CENTS]; //将多重背包转换为01背包之后的硬币的币值
int gCoinNum[MAX_CENTS]; //将多重背包转换为01背包之后每个硬币值代表的实际硬币个数 int f1[MAX_CENTS];
int f2[MAX_CENTS]; //多重背包转01背包,二进制优化
//将数字n分解为 集合S{1, 2, 4, 。。。2^(k-1), n - 2^k + 1}
//数字[1,n]内的任何数字都可以用集合S中的多个数字拼成
//其中k为满足 n - 2^k + 1 > 0的最大的k
void Expand(int v, int n, int& index){
int k = 1;
do{
gCoinNum[index] = k;
gCoinValue[index++] = k*v;
k *= 2; } while (2*k < n);
gCoinNum[index] = (n - k + 1);
gCoinValue[index++] = (n - k + 1)*v;
}
int min(int a, int b){
return a < b ? a : b;
} int main(){
int n, t, index = 0;
int coin_value[COIN_TYPE_NUM];
scanf("%d %d", &n, &t);
for (int i = 0; i < n; i++){
scanf("%d", coin_value + i);
}
int coin_num, sum_value = 0;
for (int i = 0; i < n; i++){
scanf("%d", &coin_num);
sum_value += coin_num*(coin_value[i]);
Expand(coin_value[i], coin_num, index);
}
if (sum_value < t){ //直接判断,总的钱数是否够物品价值,不够则直接返回失败
printf("-1\n");
return 0;
} memset(f1, 0, sizeof(f1));
memset(f2, 0, sizeof(f2));
int m = t + MAX_CENTS / 2; //范围,猜测的。。。 //进行合理的初始化
for (int i = 0; i <= m; i++){
f1[i] = f2[i] = INFINITE;
} f1[0] = 0; //一个硬币都没有,能够构成总价值为0的最少 硬币数目为0
f2[0] = 0; f1[gCoinValue[0]] = 1; //用前1个硬币进行初始化,即用前1种硬币凑成 coin_value[0] 价值的硬币的最少数目
f2[coin_value[0]] = 1; for (int i = 1; i < index; i++){ //多重背包转换为01背包,利用前一个物品初始化之后,从前2个物品开始循环
for (int w = m; w >= gCoinValue[i]; w--){
f1[w] = min(f1[w], f1[w - gCoinValue[i]] + gCoinNum[i]);
}
} for (int i = 0; i < n; i++){ //完全背包,从前1个物品开始
for (int w = coin_value[i]; w <= m - t; w++){
f2[w] = min(f2[w], f2[w - coin_value[i]] + 1);
}
}
int min_coin_num = INFINITE;
for (int i = t; i <= m; i++){
min_coin_num = min(min_coin_num, f1[i] + f2[i - t]);
}
if (min_coin_num == INFINITE) //判断是否能够 拼成 t
printf("-1\n");
else
printf("%d\n", min_coin_num);
return 0;
}

poj_3260 动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. python笔记-字符串

    >>> myString = 'hello world !' >>> print myString # print语句会调用str()函数 hello world ...

  2. C#四舍五入保留一位小数

    DateTime d1 = hrStaff.DateJoin; DateTime d2 = DateTime.Now; TimeSpan d3 = d2.Subtract(d1); ; //int i ...

  3. 权限管理系统(四):RBAC权限模型分类介绍

    RBAC是Role-BasedAccess Control的英文缩写,意思是基于角色的访问控制.RBAC认为权限授权实际上是Who.What.How的问题.在RBAC模型中,who.what.how构 ...

  4. char类型到底是有符号还是无符号

    根据c标准,char类型到底是有符号整数类型还是无符号整数类型,这取决于c实现,也就是c编译器的作者的想法:( 那么,如何快速的编写一个检测程序,查看当前编译器如何对char进行定义? #includ ...

  5. 开发avr单片机网络资源

    1.avr用的c语言标准库 http://www.nongnu.org/avr-libc/ 2.avr的下载上传器 http://www.nongnu.org/avrdude/ 3.编程环境platf ...

  6. UIButton 按钮控件-IOS开发 (实例)

    转自:http://justcoding.iteye.com/blog/1467999 UIButton是一个标准的UIControl控件,所以如果你对UIControl不甚了解还是先看一下我的另一篇 ...

  7. 每日英语:Rethinking How We Watch TV

    To understand how much television could soon change, it helps to visit an Intel Corp. division here ...

  8. jquery 获取各种高宽

    获取浏览器显示区域(可视区域)的高度 :   $(window).height();   获取浏览器显示区域(可视区域)的宽度 : $(window).width();   获取页面的文档高度   $ ...

  9. redis使用场景介绍

    一:缓存——热数据 热点数据(经常会被查询,但是不经常被修改或者删除的数据),首选是使用redis缓存,毕竟强大到冒泡的QPS和极强的稳定性不是所有类似工具都有的,而且相比于memcached还提供了 ...

  10. renderer:function参数介绍

    转载自:http://blog.sina.com.cn/s/blog_9eaf28f90101b7y3.html renderer:function(value, cellmeta, record, ...