910. Smallest Range II
Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and add x to A[i] (only once).
After this process, we have some array B.
Return the smallest possible difference between the maximum value of B and the minimum value of B.
Example 1:
Input: A = [1], K = 0
Output: 0
Explanation: B = [1]
Example 2:
Input: A = [0,10], K = 2
Output: 6
Explanation: B = [2,8]
Example 3:
Input: A = [1,3,6], K = 3
Output: 3
Explanation: B = [4,6,3]
Note:
1 <= A.length <= 100000 <= A[i] <= 100000 <= K <= 10000
Approach #1: C++.
class Solution {
public:
int smallestRangeII(vector<int>& A, int K) {
int N = A.size();
sort(A.begin(), A.end());
int ans = A[N-1] - A[0];
for (int i = 0; i < A.size()-1; ++i) {
int a = A[i], b = A[i+1];
int high = max(A[N-1]-K, a+K);
int low = min(A[0]+K, b-K);
ans = min(ans, high-low);
}
return ans;
}
};
Analysis:
We can formalize the above concept: if A[i] < A[j], we don't need to consider when A[i] goes down while A[j] goes up. This is because the interval (A[i] + K, A[j] - K) is a subset of (A[i] - K, A[j] + K) (here, (a, b) for a > b denotes (b, a) instead.)
That means that it is never worse to choose (up, down) instead of (down, up). We can prove this claim that one interval is a subset of another, by showing both A[i] + K and A[j] - K are between A[i] - K and A[j] + K.
For sorted A, say A[i] is the largest i that goes up. Then A[0] + K, A[i] + K, A[i+1] - K, A[A.length - 1] - K are the only relevant values for calculating the answer: every other value is between one of these extremal values.
910. Smallest Range II的更多相关文章
- [LeetCode] 910. Smallest Range II 最小区间之二
Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and ad ...
- 【LeetCode】910. Smallest Range II 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- LeetCode 910. Smallest Range II
很有意思的一道数学推理题目, 剪枝以后解法也很简洁.初看貌似需要把每个数跟其他数作比较.但排序以后可以发现情况大大简化:对于任一对元素a[i] < a[j], a[i] - k和a[j] + k ...
- 【leetcode】910. Smallest Range II
题目如下: 解题思路:我的思路是先找出最大值.对于数组中任意一个元素A[i]来说,如果A[i] + K 是B中的最大值,那么意味着从A[i+1]开始的元素都要减去K,即如果有A[i] + K > ...
- [Swift]LeetCode910. 最小差值 II | Smallest Range II
Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and ad ...
- Smallest Range II
2020-01-21 21:43:52 问题描述: 问题求解: 这个题目还是有点难度的,感觉很巧妙也很难想到. 整体的思路如下: 1. 首先原问题等价于 +0 / + 2*K 2. 那么res = M ...
- [LeetCode] 908. Smallest Range I 最小区间
Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and ...
- [LeetCode] Smallest Range 最小的范围
You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...
- [Swift]LeetCode632. 最小区间 | Smallest Range
You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...
随机推荐
- 【原】Coursera—Andrew Ng机器学习—Week 8 习题—聚类 和 降维
[1]无监督算法 [2]聚类 [3]代价函数 [4] [5]K的选择 [6]降维 Answer:本来是 n 维,降维之后变成 k 维(k ≤ n) [7] [8] Answer: 斜率-1 [9] A ...
- Node.js版-七夕无事,人艰勿拆,求别说...
七夕无事,端坐电脑前coding,略苦逼,人艰勿拆,求别说...
- Centos6、7 PHP5.4 5.5 5.6安装
https://www.mojowill.com/geek/howto-install-php-5-4-5-5-or-5-6-on-centos-6-and-centos-7/ https://blo ...
- Android开发实战之ViewPager实现向导界面
当我们更新应用,或者第一次进入应用时都会有一个向导界面,介绍这个app的内容和使用方式. 如果你细心你会发现其实这就是个viewpager,本篇博文将介绍应用的向导界面是如何制作的.希 望本篇博文对你 ...
- 解剖Nginx·模块开发篇(4)模块开发中的命名规则和模块加载与运行流程
1 命名规则 1.1 基本变量 基本变量有三个: ngx_module_t 类型的 ngx_http_foo_bar_module: ngx_command_t 类型的数组 ngx_http_foo_ ...
- Nginx源码完全注释(7)ngx_palloc.h/ngx_palloc.c
ngx_palloc.h /* * NGX_MAX_ALLOC_FROM_POOL should be (ngx_pagesize - 1), i.e. 4095 on x86. * On Windo ...
- iOS中NSFileManager文件常用操作整合
//获取Document路径 + (NSString *)getDocumentPath { NSArray *filePaths = NSSearchPathForDirectoriesInDoma ...
- impdp报错ORA-39083 ORA-02304 Object type TYPE failed to create
环境Red Hat Enterprise Linux Server release 5.8 (Tikanga)ORACLE Release 11.2.0.3.0 Production 我用expdp, ...
- spring4-4-jdbc-02
1.简化 JDBC 模板查询 每次使用都创建一个 JdbcTemplate 的新实例, 这种做法效率很低下. JdbcTemplate 类被设计成为线程安全的, 所以可以再 IOC 容器中声明它的单个 ...
- C#序列化效率对比
原文出处:https://www.cnblogs.com/landeanfen/p/4627383.html 从使用序列化到现在,用到的无非下面几种方式:(1)JavaScriptSerializer ...