题解

这道题很显然可以想出来一个\(n^2\)的dp,也就是dp[u][i]表示以u为根的子树最大值是i的点集最大是多少(i是离散化后的值)

就是对于每个儿子处理出后缀最大值然后按位相加更新父亲,我们把最大值处理成差分来存储,儿子们的最大值按位相加等于差分按位相加,后缀最大值出现了变化仅当加入了父亲节点形成一个点集,也就是父亲节点的值w[u],所在的位置,跳过差分一串连续的0,遇到第一个有数的值,然后减掉,可以用map

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
#include <queue>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define MAXN 200005
#define eps 1e-3
#define RG register
#define calc(x) __builtin_popcount(x)
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE,N,w[MAXN],a[MAXN],tot;
map<int,int> dp[MAXN];
void add(int u,int v) {
E[++sumE].to = v;E[sumE].next = head[u];head[u] = sumE;
}
void merge(int u,int v) {
if(dp[u].size() < dp[v].size()) swap(dp[u],dp[v]);
for(auto k : dp[v]) dp[u][k.fi] += k.se;
dp[v].clear();
}
void dfs(int u,int fa) {
for(int i = head[u] ; i ;i = E[i].next) {
int v = E[i].to;
if(v != fa) {
dfs(v,u);
merge(u,v);
}
}
map<int,int>::iterator k = dp[u].begin();
if(k->fi >= w[u]) return;
k = dp[u].lower_bound(w[u]);--k;
if(k->se == 1) dp[u].erase(k);else k->se -= 1;
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) read(w[i]),a[i] = w[i];
sort(a + 1,a + N + 1);
tot = unique(a + 1,a + N + 1) - a - 1;
for(int i = 1 ; i <= N ; ++i) w[i] = lower_bound(a + 1,a + tot + 1,w[i]) - a;
for(int i = 1 ; i <= N ; ++i) dp[i][w[i]] = 1;
int u;
for(int i = 2 ; i <= N ; ++i) {
read(u);
add(u,i);add(i,u);
}
dfs(1,0);
int ans = 0;
for(auto k : dp[1]) ans += k.se;
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【LOJ】 #2521. 「FJOI2018」领导集团问题的更多相关文章

  1. 「FJOI2018」领导集团问题 解题报告

    「FJOI2018」领导集团问题 题意:给你一颗\(n\)个点的带点权有根树,选择一个点集\(S\),使得点集中所有祖先的点权$\le \(子孙的点权,最大化\)|S|$(出题人语死早...) 一个显 ...

  2. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  3. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  4. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  5. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  6. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  7. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  8. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  9. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

随机推荐

  1. Android_UiAutomator(安卓UI自动化)环境搭建

    一.配置JDK环境变量 1.新建系统变量JAVA_HOME,然后输入引号内的内容(JDK安装目录) "C:\Program Files\Java\jdk1.8.0_51"      ...

  2. 配置:heartbeat+nginx+mysqld+drbd高可用笔记(OK)

    参考资料:http://www.centoscn.com/CentosServer/cluster/2015/0605/5604.html   背景需求: 使用heartbeat来做HA高可用,并且把 ...

  3. mysql 在linux服务器恢复数据表方法记录

    在本地搭建测试环境录入的数据放到线上测试,备份了数据表为一个.sql文件, 在服务器上登录mysql执行 source (如:source exposition_exposition.sql) 文件路 ...

  4. ubuntu系统安装与卸载软件常用命令

    一.unbuntu下的软件安装方式 1.deb包的安装方式 deb是debian系Linux的包管理方式,ubuntu是属于debian系的Linux发行版,所以默认支持这种软件安装方式,当下载到一个 ...

  5. 如何将html5程序打包成Android应用

    问题分析: html5网站主要由html+css+js的形式组成,需要使用浏览器进行展现. Android需要使用Java语言来开发,对于前端工程师来说,无疑是增加了很大的难度. 随后出现了很多打包工 ...

  6. Lucene 索引与检索架构图

  7. CF766 ABCDE

    LINK A 找最长非公共子序列..如果两串不是完全相同 显然就是最长的那个 /** @Date : 2017-04-15 19:52:34 * @FileName: 766A.cpp * @Plat ...

  8. Spring: J2EE框架

    Spring Framework 是一个开源的Java/Java EE全功能栈(full-stack)的应用程序框架,以Apache许可证形式发布,也有.NET平台上的移植版本.该框架基于 Exper ...

  9. 在Unity中实现屏幕空间反射Screen Space Reflection(3)

    本篇讲一下相交检测的优化.有两个措施. 线段相交检测 之前的检测都是检测光线的终点是否在物体内.我们可以尝试检测光线的线段是否与物体相交. 比如说有一个非常薄的物体,光线差不多垂直于它的表面.如果用普 ...

  10. HDU 2593 Pirates’ Code (STL容器)

    题目链接 Problem Description Davy Jones has captured another ship and is smiling contently under the sun ...