UVa11426 最大公约数之和(正版)
题面
求\(\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i, j)\)
n<=4000000,数据组数T<=100
答案保证在64位带符号整数范围内(long long就好)
Sol
之前做了一道假的
先不管i,j是否有序,我们就求\(\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i, j)\)
最后\(ans=(ans - (n + 1) * n / 2) / 2\)即可
推导
\(ans=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)*\lfloor\frac{n}{i*d}\rfloor^2\)
\(用k替换i*d,ans=\sum_{k=1}^{n}\lfloor\frac{n}{k}\rfloor^2\sum_{d|k}\mu(\frac{k}{d})d\)
\(\sum_{d|k}\mu(\frac{k}{d})d\)是积性函数,线性筛即可
加上数论分块
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(4e6 + 1);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int prime[_], num;
ll f[_];
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; f[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, f[i] = i - 1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) f[i * prime[j]] = f[i] * f[prime[j]];
else{ f[i * prime[j]] = f[i] * prime[j]; break; }
}
}
for(RG int i = 2; i < _; ++i) f[i] += f[i - 1];
}
int main(RG int argc, RG char *argv[]){
Prepare();
while(Zsydalao == 666){
RG ll n = Read(), ans = 0;
if(!n) break;
for(RG ll k = 1, j; k <= n; k = j + 1){
j = n / (n / k);
ans += (n / k) * (n / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", (ans - n * (n + 1) / 2) / 2);
}
return 0;
}
UVa11426 最大公约数之和(正版)的更多相关文章
- [UVa11426]最大公约数之和——极限版II
题意:给出n,求: \[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\gcd(i,j)\] 多组数据,\(n<=4*10^6\) sol 今天心血来潮再来写一写式子 首先这里 ...
- 51nod1188 最大公约数之和 V2
考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51 nod 1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 51nod 1040 最大公约数之和 欧拉函数
1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...
- 51nod 1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= ...
- 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...
随机推荐
- git服务器配置http请求
使用apache 配置http协议的git库 在CentOS上基于Apache http服务搭建git远程仓库(一) 基于http方式的git服务器搭建 搭建http协议的git服务器 Linux g ...
- pyDash:一个基于 web 的 Linux 性能监测工具
pyDash 是一个轻量且基于 web 的 Linux 性能监测工具,它是用 Python 和 Django 加上 Chart.js 来写的.经测试,在下面这些主流 Linux 发行版上可运行:Cen ...
- 开源项目-网上公开http代理爬取、简单分类
爬取网上公开免费代理(http/socks),解析入库,可满足需要切换IP的场景(爬虫.投票等)需求. 项目地址: https://github.com/Jwnie/proxyservice 1.采用 ...
- Java经典编程题50道之三十二
取一个整数a从右端开始的4-7位. public class Example32 { public static void main(String[] args) { cut(12 ...
- 微信小程序(一)
开发流程 注册微信小程序并申请微信支付-->制作小程序-->上传并提交审核-->审核通过,小程序上线 开发微信小程序需要准备 企业公众号(被认证)以及申请小程序.微信开发技术.S ...
- java4 - 函数(方法)
一.学习大纲: 1. 定义函数可以将功能封装 2. 函数的级别都是同级别的,不能进行函数套用 3. 便于对该功能进行复用 4. 函数只有被调用才能被执行 5. 函数的出现提高了代码的复用性 6. 函数 ...
- django新手第一课
django是基于python的一个web框架,大致结构如下: 在pycharm,python2.7,django1.8,mysql都装好的情况下,现在开始django的初试: 一.基础启动djang ...
- win10外接键盘失灵
故障描述:笔记本外接的键盘突然之间就失灵,键盘的灯不亮,无法输入 处理方程: 1. 我的电脑右击--> 管理 --> 设备管理器(开始失灵时,键盘下的HID Keyboard Device ...
- SpringCloud入门1-服务注册与发现(Eureka)
前言 Oracle转让Java,各种动态语言的曝光率上升,Java工程师的未来在哪里?我觉得Spring Cloud让未来有无限可能.拖了半年之久的Spring Cloud学习就从今天开始了.中文教材 ...
- c# try-finally有什么用
finally 代码块中的代码是 try-catch 结构执行完后无论有无异常发生都会执行的.finally 代码块中的代码是 try-catch 结构执行完后无论有无异常发生都会执行的.final ...