题面

Bzoj

Sol

一张无向无重边自环的图的边数最多为\(\frac{n(n-1)}{2}\)

考虑每个点的贡献

\[n*2^{\frac{n(n-1)}{2} - (n-1)}\sum_{i=0}^{n-1}i^kC(n-1, i)
\]

很好理解

考虑后面的\(\sum_{i=0}^{n-1}i^kC(n-1, i)\)

\(i^k\)这里把它用第二类斯特林数表示出来

那么就是

\[\sum_{i=0}^{n-1}\sum_{j=0}^{i}S(k, j) j!C(i, j)
\]

\[=\sum_{j=0}^{n-1}S(k, j)j!\sum_{i=j}^{n-1}C(n-1,i)C(i,j)
\]

考虑\(\sum_{i=j}^{n-1}C(n-1,i)C(i,j)\)

就是\(C(n-1, j)\sum_{i=j}^{n-1}C(n-1, i-j)=C(n-1,j)2^{n-1-j}\)

带回去

\[\sum_{j=0}^{n-1}j!C(n-1,j)2^{n-1-j}S(k, j)
\]

\[=\sum_{j=0}^{n-1}\frac{(n-1)!}{(n-1-j)!}2^{n-1-j}S(k,j)
\]

又由于\(i>j\)时\(S(i, j)=0\),\(n\)很大枚到\(k\)就可以了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int Zsy(998244353);
const int Phi(998244352);
const int G(3);
const int _(8e5 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k, ans, A[_], B[_], l, N, r[_], mx, fac[_], inv[_]; IL int Pow(RG ll x, RG ll y){
RG ll ret = 1;
for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
return ret;
} IL void NTT(RG int* P, RG int opt){
for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
for(RG int i = 1; i < N; i <<= 1){
RG int W = Pow(G, Phi / (i << 1));
if(opt == -1) W = Pow(W, Zsy - 2);
for(RG int p = i << 1, j = 0; j < N; j += p)
for(RG int w = 1, k = 0; k < i; ++k, w = 1LL * w * W % Zsy){
RG int X = P[k + j], Y = 1LL * w * P[k + j + i] % Zsy;
P[k + j] = (X + Y) % Zsy, P[k + j + i] = (X - Y + Zsy) % Zsy;
}
}
if(opt == 1) return;
RG int Inv = Pow(N, Zsy - 2);
for(RG int i = 0; i < N; ++i) P[i] = 1LL * P[i] * Inv % Zsy;
} IL void Mul(){
for(N = 1; N <= mx + mx; N <<= 1) ++l;
for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
NTT(A, 1); NTT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = 1LL * A[i] * B[i] % Zsy;
NTT(A, -1);
} IL void Up(RG int &x, RG int y){
x += y;
if(x >= Zsy) x -= Zsy;
} int main(RG int argc, RG char* argv[]){
n = Input(), k = Input(), mx = min(n - 1, k);
fac[0] = 1;
for(RG int i = 1; i <= mx; ++i) fac[i] = 1LL * i * fac[i - 1] % Zsy;
inv[mx] = Pow(fac[mx], Zsy - 2);
for(RG int i = mx - 1; ~i; --i) inv[i] = 1LL * inv[i + 1] * (i + 1) % Zsy;
for(RG int i = 0; i <= mx; ++i){
A[i] = B[i] = inv[i];
B[i] = 1LL * B[i] * Pow(i, k) % Zsy;
if(i & 1) A[i] = Zsy - A[i];
}
Mul(); RG int Inv = Pow(2, Zsy - 2);
for(RG int i = 0, e = 1, x = n - 1, pw = Pow(2, n - 1); i <= mx; ++i, --x){
Up(ans, 1LL * e * pw % Zsy * A[i] % Zsy);
e = 1LL * e * x % Zsy;
pw = 1LL * pw * Inv % Zsy;
}
ans = 1LL * n * Pow(2, 1LL * n * (n - 1) / 2 - n + 1) % Zsy * ans % Zsy;
printf("%d\n", ans);
return 0;
}

Bzoj5093: 图的价值的更多相关文章

  1. [CF932E]Team Work & [BZOJ5093]图的价值

    CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac ...

  2. 【题解】BZOJ5093图的价值(二项式+NTT)

    [题解]BZOJ5093图的价值(二项式+NTT) 今天才做这道题,是我太弱了 强烈吐槽c++这种垃圾语言tmd数组越界不re反倒去别的数组里搞事情我只想说QAQ 推了一张A4纸的式子 考虑每个点的度 ...

  3. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  4. BZOJ5093图的价值(斯特林数)

    题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...

  5. bzoj5093图的价值:多项式,斯特林数(二项式反演)

    Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为 ...

  6. BZOJ5093 图的价值(NTT+斯特林数)

    显然每个点会提供相同的贡献.于是现在只考虑1号点的贡献.若其度数为i,则在2~n号点选i个连上,剩下的边随便连,这样可以算出答案为 这个式子可以O(n)计算.发现k比较小,于是考虑如何将这个式子化为与 ...

  7. bzoj5093:图的价值(第二类斯特林数+NTT)

    传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...

  8. BZOJ5093 图的价值——推式子+第二类斯特林数

    原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 ...

  9. 【学术篇】CF932E Team Work && bzoj5093 图的价值

    两个题的传送门 对于CF这道题, 分别考虑每种可能的集合大小, 每个大小为\(k\)的集合数量有\(\binom nk\)个, 所以最后的答案就是 \[\sum_{i=0}^n\binom{n}{i} ...

随机推荐

  1. markdown的流程图、时序图、甘特图画法

    https://www.jianshu.com/p/a9ff5a9cdb25 Markdown里面的序列图 https://shd101wyy.github.io/markdown-preview-e ...

  2. Tomcat服务器的配置

    本地安装的Tomcat服务器版本是 Apache Tomcat/7.0.42 启动 localhost 使用Tomcat的前提是安装了jdk,我在本地安装了jdk7.Tomcat服务器的文件目录为F: ...

  3. table内容强制换行

    为防止文字过长而撑坏表格,一般我们需要通过css使td中内容强制换行.分别给table和td加一条样式即可实现: <meta charset="utf-8"> < ...

  4. 华为云照片的爬虫程序更新(python3.6)

    一.背景: 每年终都有一个习惯,就是整理资料进行归档,结果发现手机照片全备份在华为云里,在官网上找了一圈,没找到官方的pc工具用来同步照片. 于是找出上次写的程序,看看能不能爬到数据,然而……果然不好 ...

  5. MySQL数据库基础(MySQL5.7安装、配置)

      写在前面: MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQ ...

  6. object类的equals方法简介 & String类重写equals方法

    object类中equals方法源码如下所示 public boolean equals(Object obj) { return this == obj; } Object中的equals方法是直接 ...

  7. MySQL 日志的类型

    日志文件对于一个服务器来说是非常重要的,它记录着服务器的运行信息,许多操作都会写日到日志文件,通过日志文件可以监视服务器的运行状态及查看服务器的性能,还能对服务器进行排错与故障处理,MySQl中有六种 ...

  8. Node.js入门(含NVM、NPM、NVM的安装)

    本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. Node.js的介绍 引擎 引擎的特性: JS的内核即引擎.因为引擎有以 ...

  9. Nginx 调优经验记录

    1.2017年连续爆出5.x版本xshell安全问题和intel的cpu设计漏洞 ,此时我就注意到尽量少暴露自己线上使用的工具以及版本.例如:mysql版本,以及缓存层策略,服务器版本等,以下为 隐藏 ...

  10. Qt Creator 整合 python 解释器教程

    目录 1. 前言 2.前提条件 3.步骤 3.1 新建 python文件 3.2 编写 python 代码 3.3 配置 python 解释器 3.4 执行 python file 1. 前言 Pyt ...