正着做不好做,于是我们考虑反着来,如何计算一个点集s的答案呢,一定是所有的方案减去不合法的方案,不合法的方案一定是缩完点后是一个DAG,那么就一定有度数为0的scc,于是我们枚举s的子集,就是说这些点构成的scc的度数为0,这里我们就需要容斥了,容斥的目的是算出s集组成不合法的DAG的方案数,因为我们没有办法确定这里有几个scc。于是我们提前处理出g[s]表示这里面的每种不同scc的方案的贡献是$-1^{num-1}$,然后它们和其余的点之间随便连边,其余的点之间也随便连边,然后g数组我们是枚举任意一个点,然后枚举它所在的scc,然后在通过f数组转移,f就是总方案减去所有子集度数为0时的方案。

妙妙啊。

 #include <cstdio>
#define N 16
#define mod 1000000007
using namespace std;
int n,m,to[<<N],cnt[<<N],bin[N*N],e[<<N];
int f[<<N],g[<<N];
int calc(int S,int T){
int ans=;
for(;S;S-=S&-S)
ans+=cnt[to[S&-S]&T];
return ans;
}
int main(){
scanf("%d%d",&n,&m);
bin[]=;
for(int i=;i<=m;i++)
bin[i]=bin[i-]*%mod;
for(int i=,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
to[<<u-]|=<<v-;
}
for(int i=;i<bin[n];i++)cnt[i]=cnt[i>>]+(i&);
for(int i=;i<bin[n];i++)e[i]=calc(i,i);
for(int i=;i<bin[n];i++){
int k=i&-i,s=i^k;
for(int j=(s-)&s;j;j=(j-)&s)
g[i]=(g[i]-1ll*g[i^j^k]*f[j|k]%mod+mod)%mod;
if(i^k)g[i]=(g[i]-g[i^k]+mod)%mod;
f[i]=bin[e[i]];
for(int j=i;j;j=(j-)&i)
f[i]=(f[i]-1ll*g[j]*bin[e[i^j]+calc(j,i^j)]%mod+mod)%mod;
(g[i]+=f[i])%=mod;
}
printf("%d\n",f[bin[n]-]);
return ;
}

bzoj3812&uoj37 主旋律的更多相关文章

  1. uoj37 主旋律

    题意:一个班级n个人,如果a爱b,那么a->b一条有向边.问有多少种删边集合使得图仍然强联通? n<=15.   标程: #include<cstdio> #include&l ...

  2. BZOJ3812 主旋律(状压dp+容斥原理)

    设f[S]为S点集是SCC的方案数.考虑通过去掉不合法方案转移.可以枚举入度为0的SCC所含点集S',这样显然S^S'内部的边和由S'连向S^S'的边删还是不删任选.但是这样无法保证S'包含所有入度为 ...

  3. BZOJ3812主旋律

    /* 这道题其实没有看懂 所以整理一下吧 首先思想转化成所有方案减去不强联通的方案 不强联通的方案相当于很多强联通分量缩点后的dag 转化成子问题, 问很多点的dag方案数 然后枚举作为出度为0的点集 ...

  4. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

  5. BZOJ3812: 主旋律

    传送门 Sol 考虑容斥 强联通图反过来就是一些缩点后的 \(DAG\) 一个套路就是对出(入)度为 \(0\) 的点进行容斥 设 \(g_S,h_S\) 分别表示选了奇数个 \(0\) 入度和偶数个 ...

  6. BZOJ3812 清华集训2014 主旋律

    直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...

  7. [BZOJ3812]主旋律:状压DP+容斥原理

    分析 Miskcoo orz 令\(f[S]\)表示使得\(S\)这个点集强连通的方案数. 然后呢?不会了 考虑到将一个有向图SCC缩点后,得到的新图是一个DAG,所以我们可以类比带标号DAG计数的解 ...

  8. UOJ37. 【清华集训2014】主旋律

    http://uoj.ac/problem/37 题解 题目是让我们求出有多少个边集可以使这张图强连通. 先补集转化一下,求这张图不强连通的方案数. 我们考虑这样的图缩完点之后的情况,既然不强连通,那 ...

  9. bzoj3812 主旋律 容斥+状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...

随机推荐

  1. java Map遍历

    http://www.cnblogs.com/fczjuever/archive/2013/04/07/3005997.html 1. 阐述 对于Java中Map的遍历方式,很多文章都推荐使用entr ...

  2. Android优秀github项目整理

    1.照相选相册,裁剪的 library TakePhotohttps://github.com/crazycodeboy/TakePhoto 2几行代码快速集成二维码扫描功能https://githu ...

  3. javaXML文件解析之DOM4J实操

    既然前面说了DOM4J这里好那里好,大家都是在用这个,那咱就不得不写一个了. XML文件: <?xml version="1.0" encoding="UTF-8& ...

  4. Pascal Triangle

    Description: Given numRows, generate the first numRows of Pascal's triangle. For example, given numR ...

  5. 学习了解 Exchanger - 实现生产者消费者模型

    例子很简单 Exchanger可以理解为消息队列或者说是一个通信管道,从一边拿到消息,另外一边进行消费. 不过这个是同步实现的,消费者在exchange之前,生产者一直处于等待状态,而不是一直生产. ...

  6. cocos2d-x_ Windows下Android环境搭建

    在Windows环境下编译cocos2d-x-3.0 Android-NDK编译:cocos2d-x(二) Mac 下搭建:http://www.cocoachina.com/bbs/read.php ...

  7. python之文件操作(基础)

    文件操作作为python基础中的重点,必须要掌握. 1.默认我们在本地电脑E盘新建wp.txt文件进行测试,文件内容如下设置. 2.进行代码编写: f=open("E://wp.txt&qu ...

  8. windows下安装mysql驱动mysql-python

    Windows下直接pip安装会出错 解决方案 到Python Extension Packages for Windows - Christoph Gohlke 下载MySQL_python‑1.2 ...

  9. TX2 安装 ROS 依赖库错误解决办法

    一.更换ubuntu 16.04 更新源 1. 更新源 deb http://mirrors.ustc.edu.cn/ubuntu-ports/ xenial main multiverse rest ...

  10. PAT1013: Battle Over Cities

    1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...