BZOJ2751 [HAOI2012]容易题
Description
为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!
Input
第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。
Output
一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。
Sample Input
Sample Output
HINT
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18
数据范围
30%的数据n<=4,m<=10,k<=10
另有20%的数据k=0
70%的数据n<=1000,m<=1000,k<=1000
100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m
233333
我一直WA10%...
后来才发现忘记加模再取模了...
嘿嘿嘿,不过还是A了...
快速幂,简单
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
#define mod 1000000007
long long n,m,k,cha[];
long long x,sum;
struct node
{
long long x,y;
}a[];
int cmp(node a,node b)
{
if(a.x==b.x)
{
return a.y<b.y;
}
return a.x<b.x;
}
long long mul(long long n,long long m)
{
long long ans=;
while(n!=)
{
if(n%==)
{
ans=ans+m;
ans=ans%mod;
}
n=n/;
m=m*;
m=m%mod;
}
return (ans+m)%mod;
}
long long quick(long long n,long long m)
{
long long ans=;
while(n!=)
{
if(n%==)
{
ans=mul(ans,m);
ans=ans%mod;
}
m=mul(m,m);
m=m%mod;
n=n/;
}
return ans;
}
int main()
{
scanf("%lld%lld%lld",&n,&m,&k);
if(n%==)
{
long long x1=((+n)/);
sum=mul(n,x1)%mod;
}else
{
long long x1=(n/);
sum=mul(n+,x1)%mod;
}
for(long long i=;i<=k;i++)
{
scanf("%lld%lld",&a[i].x,&a[i].y);
}
sort(a+,a+k+,cmp);
long long cnt=;
for(long long i=;i<=k;i++)
{
if(a[i].x!=a[i-].x)
{
cnt++;
cha[cnt]=sum;
}
if(a[i].y==a[i-].y&&a[i].x==a[i-].x)continue;
cha[cnt]=cha[cnt]-a[i].y;
cha[cnt]=((cha[cnt]%mod)+mod)%mod;
}
long long ans1=quick(m-cnt,sum);
for(long long i=;i<=cnt;i++)
{
ans1=(ans1*cha[i])%mod;
}
cout<<ans1<<endl;
}
BZOJ2751 [HAOI2012]容易题的更多相关文章
- BZOJ2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 872 Solved: 377[Submit][S ...
- 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)
传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...
- 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂
[bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...
- BZOJ 2751: [HAOI2012]容易题(easy) 数学
2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...
- BZOJ 2751: [HAOI2012]容易题(easy)( )
有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...
- 2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1087 Solved: 477[Submit][ ...
- [HAOI2012] 容易题[母函数]
794. [HAOI2012] 容易题 ★★☆ 输入文件:easy.in 输出文件:easy.out 简单对比时间限制:1 s 内存限制:128 MB 秒 输入:easy.in 输出: ...
- 洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...
- 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题
Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...
随机推荐
- 爬虫Scrapy框架运用----房天下二手房数据采集
在许多电商和互联网金融的公司为了更好地服务用户,他们需要爬虫工程师对用户的行为数据进行搜集.分析和整合,为人们的行为选择提供更多的参考依据,去服务于人们的行为方式,甚至影响人们的生活方式.我们的scr ...
- decode ways(动态规划)
A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' - ...
- 排序算法入门之插入排序(java实现)
插入排序思想:相当于插入元素,对于第i个元素,i之前的元素已经是有序的了,这时候将第i个元素依次与前面元素比较,插入合适的位置.
- 使用SecureCRT的SFTP在WINDOWS与LINUX之间传输文件(转载)
参考文献: http://ice-k.iteye.com/blog/1068275 http://www.cnblogs.com/chen1987lei/archive/2010/11/26/1888 ...
- 使用swagger管理接口
swagger 配置 1.pom 增加jar包依赖 <dependency> <groupId>io.springfox</groupId> <artifac ...
- 6 Tools To Jump Start Your Video Content Marketing
http://www.forbes.com/sites/drewhendricks/2014/10/16/6-tools-to-jump-start-your-video-content-market ...
- hashmap,hashTable concurrentHashMap 是否为线程安全,区别,如何实现的
线程安全类 在集合框架中,有些类是线程安全的,这些都是jdk1.1中的出现的.在jdk1.2之后,就出现许许多多非线程安全的类. 下面是这些线程安全的同步的类: vector:就比arraylist多 ...
- MySQL远程链接
当把本地数据库作为服务器的时候,如果你发现client无法链接到你的数据库服务器,那么有可能是: 1. 当前account没有远程链接权限,如何开通? GRANT ALL PRIVILEGES ON ...
- eclipse 安装svn和gradle
公司项目用的eclispe svn和gradle 所以需要配置 SVN教程:https://blog.csdn.net/jieshaowang1229/article/details/5159499 ...
- QT5:C++实现基于Multimedia的音乐播放器(序)
前段时间C++课设,决定做个播放器,于是参考了网上的代码后,做了个很简陋的音乐播放器(只写了MP3格式)出来,虽然功能甚少,但还是决定把过程记录一下. 成品如下图: 播放器功能: 上.下一首,音量控制 ...