【CJOJ2512】gcd之和(莫比乌斯反演)
【CJOJ2512】gcd之和(莫比乌斯反演)
题面
给定\(n,m(n,m<=10^7)\)
求
\]
题解
首先把公因数直接提出来
\]
很明显
设
\]
\]
\]
\]
\]
很明显,可以对\(f(x)\)进行莫比乌斯反演,
\]
可以数论分块算
所求的式子
\]
其中,对于每一次计算的\(a,b\)
\(a=[\frac{n}{d}],b=[\frac{m}{d}]\)
这个也很显然可以数论分块
最后,总体复杂度\(O(n)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 998244353
#define MAX 10000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m;
bool zs[MAX+1000];
int pri[MAX+1000],tot,mu[MAX+1000],smu[MAX+1000];
long long ans;
void pre()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=MAX;++i)smu[i]=(smu[i-1]+mu[i])%MOD;
}
int Solve(int a,int b)
{
int i=1,j;
long long ret=0;
while(i<=a)
{
j=min(a/(a/i),b/(b/i));
ret+=1ll*(smu[j]-smu[i-1]+MOD)%MOD*(a/i)%MOD*(b/i)%MOD;
ret%=MOD;
i=j+1;
}
return (ret+MOD)%MOD;
}
int main()
{
n=read();m=read();
if(n>m)swap(n,m);
int i=1,j;
pre();
while(i<=n)
{
j=min(n/(n/i),m/(m/i));
int tt=1ll*(i+j)*(j-i+1)/2%MOD;
ans+=1ll*tt*Solve(n/i,m/i);
ans%=MOD;
i=j+1;
}
printf("%lld\n",(ans+MOD)%MOD);
return 0;
}
【CJOJ2512】gcd之和(莫比乌斯反演)的更多相关文章
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【BZOJ2818】Gcd(莫比乌斯反演)
[BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Ou ...
- 【HDU1695】GCD(莫比乌斯反演)
[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- 【51nod1678】lyk与gcd(莫比乌斯反演+枚举因数)
点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy
GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatis ...
- spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...
- hdu_1695: GCD 【莫比乌斯反演】
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...
随机推荐
- php header解决跨域问题
header('Access-Control-Allow-Credentials:true'); header('Access-Control-Allow-Origin:http://wdjkj.co ...
- Jmeter_上传与下载
今天重点说一下Jmeter的上传与下载 1:Jmeter上传文件 首先确认你的文件名称,参数名称,MIME类型,这些可以从接口文档里面获取,或者直接在页面抓包然后从请求头里面查看.注意,此处我的文件路 ...
- 蓝桥杯 基础练习 之 FJ的字符串
问题描述 FJ在沙盘上写了这样一些字符串: A1 = "A" A2 = "ABA" A3 = "ABACABA" A4 = "AB ...
- 2个域名重定向到https域名
配置实例: [root@iZbp17q09o7e8pgg9dybd7Z conf.d]# cat company.confserver { listen 80; server_name www.yu* ...
- JS实现图片''推拉门''效果
JS实现图片''推拉门''效果 ''推拉门''动效也可以称作"手风琴"效果,大多数效果实现的思路基本是一样的,下面介绍两种方法,一种是通过改变图片的偏移位置实现移动,另一种是通 ...
- Django——ContentType及ContentType-signals的使用
一.ContentType 在django中,有一个记录了项目中所有model元数据的表,就是ContentType,表中一条记录对应着一个存在的model,所以可以通过一个ContentType表的 ...
- 35 个 jQuery 小技巧
1. 禁止右键点击 $(document).ready(function(){ $(document).bind("contextmenu",function(e){ return ...
- 深入java虚拟机学习 -- 类的加载机制
当看到"类的加载机制",肯定很多人都在想我平时也不接触啊,工作中无非就是写代码,不会了可以百度,至于类,jvm是怎么加载的我一点也不需要关心.在我刚开始工作的时候也觉得这些底层的内 ...
- filter-api文档
git地址:https://github.com/jiqianqin/filters 不断优化中,欢迎加入讨论- filter-tags 效果图: 参数 说明 格式 备注 data 展示的数据 [{ ...
- UVA-714 二分
把可能的进行二分判断,判断的时候尽量向右取,一直取到不能去为止,这样才有可能成功分割. 判断是否可以把up作为最大值的代码: bool judge(LL up){ if(up < Big) re ...