Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3
0 0 2

Sample Output

1
1
2

HINT

100%的数据 n<=100000

题解:

splay,按位置维护,先加入的点小,后加的大

每次加入直接模拟splay的插入。

由于没有延迟标记,所以不需要pushdown,但要pushup

每次pushup要维护两个值,当前节点结尾的最长上升子序列,当前子树的最长子序列

推测可知,当前节点结尾的最长上升子序列只由左节点子树的序列的递推而来,因为左子树位置在前面,且小

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=;
int tot2,tot1,s[MAXN],pre[MAXN],ch[MAXN][],key[MAXN];
int size[MAXN],root,n,m,maxn[MAXN],g[MAXN];
void NewNode(int &x,int fa,int k)
{
if (tot2) x=s[tot2--];
else x=++tot1;
key[x]=k;
size[x]=;
pre[x]=fa;
ch[x][]=ch[x][]=;
}
void pushup(int x)
{
int lson=ch[x][],rson=ch[x][];
size[x]=size[lson]+size[rson]+;
maxn[x]=max(max(g[x],maxn[rson]),maxn[lson]);
if (key[x]==2e9||key[x]==) maxn[x]=,g[x]=;
}
void rotate(int x,bool t)
{
int y=pre[x];
ch[y][!t]=ch[x][t];
pre[ch[x][t]]=y;
if (pre[y])
ch[pre[y]][ch[pre[y]][]==y]=x;
pre[x]=pre[y];
ch[x][t]=y;
pre[y]=x;
pushup(y);pushup(x);
}
int getkth(int r,int k)
{
int x=size[ch[r][]]+;
if (k==x) return r;
if (k<x) getkth(ch[r][],k);
else getkth(ch[r][],k-x);
}
void splay(int x,int goal)
{
while (pre[x]!=goal)
{
if (pre[pre[x]]==goal)
{
rotate(x,ch[pre[x]][]==x);
}
else
{
int y=pre[x],kind=ch[pre[y]][]==y;
if (ch[y][kind]==x)
{
rotate(x,!kind);
rotate(x,kind);
}
else
{
rotate(y,kind);
rotate(x,kind);
}
}
}
pushup(x);
if (goal==) root=x;
}
int main()
{int i,x;
cin>>n;
NewNode(root,,2e9);
NewNode(ch[root][],root,);
for (i=; i<=n; i++)
{
scanf("%d",&x);
splay(getkth(root,x+),);
splay(getkth(root,x+),root);
NewNode(ch[ch[root][]][],ch[root][],i);
splay(ch[ch[root][]][],);
g[root]=maxn[ch[root][]]+;
pushup(root);
printf("%d\n",maxn[root]);
}
}

[Tjoi2013]最长上升子序列的更多相关文章

  1. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  2. BZOJ 3173: [Tjoi2013]最长上升子序列

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 797[Submit][St ...

  3. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  4. BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )

    因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...

  5. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  6. bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2253  Solved: 1136[Submit][S ...

  7. BZOJ_3173_[Tjoi2013]最长上升子序列_splay

    BZOJ_3173_[Tjoi2013]最长上升子序列_splay Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数 ...

  8. 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列

    [LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...

  9. P4309 [TJOI2013]最长上升子序列

    题目 P4309 [TJOI2013]最长上升子序列 做法 最长上升序列的求法肯定是烂大街了 水题是肯定的,确定出序列的位置然后套个树状数组就好了(强制在线的话改成线段树维护前缀最值也行) 所以说这题 ...

  10. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

随机推荐

  1. C语言第0次作业

    一.你认为大学的学习生活.同学关系.师生应该是怎样的? (1)学习生活:首先大学的学习生活应该是充实的,尽量做到时时有事做.每天有计划的学习.生活.华尔街有一位名叫罗伊.R.纽伯格的投资大师,他每天早 ...

  2. ExecutorService,另一种服务,线程

    http://heipark.iteye.com/blog/1393847 Executors.newFixedThreadPool和ArrayBlockingQueue一点使用心得       博客 ...

  3. 一个轻量级iOS安全框架:SSKeyChain

    摘要 SSKeyChains对苹果安全框架API进行了简单封装,支持对存储在钥匙串中密码.账户进行访问,包括读取.删除和设置.SSKeyChain的作者是大名鼎鼎的SSToolkit的作者samsof ...

  4. [Android FrameWork 6.0源码学习] View的重绘过程之WindowManager的addView方法

    博客首页:http://www.cnblogs.com/kezhuang/p/关于Activity的contentView的构建过程,我在我的博客中已经分析过了,不了解的可以去看一下<[Andr ...

  5. Scala 操作符与提取器

    实际上Scala没有操作符, 只是以操作符的格式使用方法. 操作符的优先级取决于第一个字符(除了赋值操作符), 而结合性取决于最后一个字符 Scala的操作符命名更加灵活:) 操作符 中置操作符(In ...

  6. $.ajax 提交数据到后台.

    //AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML -- (Extensible Markup Language 可扩展标记语言 ...

  7. Linux入门:增加用户,并赋予权限

    一.增加用户 1.增加用户,并指定主目录 # useradd –d /usr/sam -m sam此命令创建了一个用户sam,其中-d和-m选项用来为登录名sam产生一个主目录/usr/sam(/us ...

  8. leetcode算法:Island Perimeter

    You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represen ...

  9. linux添加硬盘分区挂载教程

    基本步骤:分区--格式化--挂载--写入文件 1.首先用fdisk -l命令查看添加的硬盘名称,可以看到sdb为新增的硬盘 [root@oracle ~]# fdisk -l Disk /dev/sd ...

  10. Spark:导入数据到oracle

    方案一: //overwrite JdbcDialect fitting for Oracle val OracleDialect = new JdbcDialect { override def c ...