Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

Sample Input

3
1 2 50
1 3 50
50 0 0

Sample Output

1.000000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。

做一个转化,转化为求不能进入充电状态的概率,最后用1减去即可
那么设 \(f[x]\) 表示x不能被进入充电状态的概率,先考虑子树内部:
\(f[x]=(1-q[i])*\prod{((1-f[u])*(1-p[i])+f[u])}\)
上面的转移方程意思为分两种情况:
1.子节点内部没有进入充电状态 \(f[u]\)
2.子节点内部已经进入充电状态,但是边断掉了 \((1-f[u])*(1-p[i])\)
最后从根下放再做一遍即可

转载于巨佬PI sonhttp://www.cnblogs.com/Yuzao/p/7679317.html

喻队太巨了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
int next,to;
double dis;
}edge[];
int num,head[];
double f[],ans,c[];
void add(int u,int v,double d)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=d;
}
void dfs1(int x,int fa)
{int i;
f[x]=-c[x];
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==fa) continue;
dfs1(v,x);
f[x]*=(-edge[i].dis)*(-f[v])+f[v];
}
}
void dfs2(int x,int fa)
{double tmp;
int i;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==fa) continue;
tmp=(-edge[i].dis)*(-f[v])+f[v];
tmp=f[x]/tmp;
f[v]*=(-edge[i].dis)*(-tmp)+tmp;
dfs2(v,x);
}
}
int main()
{int i,n,u,v;
double p;
cin>>n;
for (i=;i<=n-;i++)
{
scanf("%d%d%lf",&u,&v,&p);
add(u,v,p/100.0);
add(v,u,p/100.0);
}
for (i=;i<=n;i++)
scanf("%lf",&c[i]),c[i]/=100.0;
dfs1(,);
dfs2(,);
for (i=;i<=n;i++)
ans+=1.0-f[i];
printf("%.6lf\n",ans);
}

[SHOI2014]概率充电器的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  4. 洛谷 P4284 [SHOI2014]概率充电器 解题报告

    P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  5. P4284 [SHOI2014]概率充电器

    P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...

  6. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  7. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

  8. 【BZOJ3566】[SHOI2014]概率充电器 期望+树形DP

    [BZOJ3566][SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线 ...

  9. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  10. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. 第十四,十五周PTA作业

    1.第十四周part1 7-3 #include<stdio.h> int main() { int n; scanf("%d",&n); int a[n]; ...

  2. 第二次作业--------STEAM

    --------------------------------------第一部分 产品介绍----------------------------------------------------- ...

  3. 248&258--高级软件工程第三次作业

    0 小组成员 马帅 / 2017202110248 齐爽爽 / 2017282110258 1 项目 GitHub 地址 GitHub:https://github.com/whumashuai/QT ...

  4. Python基于共现提取《釜山行》人物关系

    Python基于共现提取<釜山行>人物关系 一.课程介绍 1. 内容简介 <釜山行>是一部丧尸灾难片,其人物少.关系简单,非常适合我们学习文本处理.这个项目将介绍共现在关系中的 ...

  5. 初谈Git(本机克隆项目远程仓库)

    1. 码云注册与新建项目 注册并新建项目 2. Git安装并配置 安装 配置 3. clone项目 附:一些Git命令 git clone 拷贝并跟踪远程的master分支 git add 跟踪新文件 ...

  6. JAVA和Android的回调机制

    本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/17483273),请尊重他人的辛勤劳动成果,谢谢 以 前不理解什么叫回 ...

  7. 【微软大法好】VS Tools for AI全攻略

    大家都知道微软在Connect();17大会上发布了VS Tools for AI,旨在提升Visual Studio和VSCode对日益增长的深度学习需求的体验.看了一圈,网上似乎没有一个完整的中文 ...

  8. vmware 12 安装 mac os 10.12正式版

    1.首先下载安装vmware 12 pro ,将VT打开(虚拟功能,以前安装过虚拟机点的同学可忽略). 2.下载mac ox 10.12正式版镜像文件(cdr后缀). 3.下载Unlocker208( ...

  9. React 深入系列2:组件分类

    文:徐超,<React进阶之路>作者 授权发布,转载请注明作者及出处 React 深入系列2:组件分类 React 深入系列,深入讲解了React中的重点概念.特性和模式等,旨在帮助大家加 ...

  10. python-map的用法

    map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 1.当seq只 ...