Description

Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?

Input

数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0<=s,t<n)
接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。(0<=a,b<n,a与b不相等,0<=c<=1000)
 

Output

 
只有一行,包含一个整数,为最少花费。

Sample Input

5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100

Sample Output

8

HINT

对于30%的数据,2<=n<=50,1<=m<=300,k=0;

对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;

对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.

建立分层图。
f[u][t]表示在节点u时已经免费乘坐t次的最少花
费。照样跑最短路。
枚举与u相连的所有节点v,w(u,v)表示权值。
若t<k:
f[v][t+1]=min(f[v][t+1],f[u][t])
对于所有:
f[v][t]=min(f[v][t],f[u][t]+w(u,v))

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct Node
{
int next,to,dis;
}edge[];
struct XXX
{
int x;
int k;
};
int num,head[],dist[][],n,m,k,S,T,ans;
bool vis[][];
void add(int u,int v,int d)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=d;
}
void SPFA()
{int i;
queue<XXX> Q;
Q.push((XXX){S,});
dist[S][]=;
while (Q.empty()==)
{
XXX u=Q.front();
Q.pop();
vis[u.x][u.k]=;
for (i=head[u.x];i;i=edge[i].next)
{int v=edge[i].to;
if (dist[v][u.k]>dist[u.x][u.k]+edge[i].dis)
{
dist[v][u.k]=dist[u.x][u.k]+edge[i].dis;
if (vis[v][u.k]==)
{
vis[v][u.k]=;
Q.push((XXX){v,u.k});
}
}
if (u.k+<=k&&dist[v][u.k+]>dist[u.x][u.k])
{
dist[v][u.k+]=dist[u.x][u.k];
if (vis[v][u.k+]==)
{
vis[v][u.k+]=;
Q.push((XXX){v,u.k+});
}
}
}
}
}
int main()
{int i,u,v,c;
cin>>n>>m>>k;
memset(dist,/,sizeof(dist));
scanf("%d%d",&S,&T);
for (i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
add(v,u,c);
}
SPFA();
ans=2e9;
for (i=;i<=k;i++)
ans=min(ans,dist[T][i]);
cout<<ans;
}

[JLOI2011]飞行路线的更多相关文章

  1. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  2. 分层图+最短路算法 BZOJ 2763: [JLOI2011]飞行路线

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

  3. BZOJ 2763: [JLOI2011]飞行路线 最短路

    2763: [JLOI2011]飞行路线 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. poj 2763: [JLOI2011]飞行路线(spfa分层图最短路)

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 2156 Solved: 818 [Submit][Statu ...

  5. Bzoj 2763: [JLOI2011]飞行路线 dijkstra,堆,最短路,分层图

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1728  Solved: 649[Submit][Statu ...

  6. Bzoj 2763: [JLOI2011]飞行路线 拆点,分层图,最短路,SPFA

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1694  Solved: 635[Submit][Statu ...

  7. [JLOI2011]飞行路线 不同的算法,不同的悲伤

    题目 :BZOJ2763 洛谷P4568 [JLOI2011]飞行路线 一道最短路的题目,想想写个题解也不错(好久没写题解了_(:з」∠)_) 然后这道题中心思路是dijikstra处理最短路,所以没 ...

  8. 洛谷 P4568 [JLOI2011]飞行路线 解题报告

    P4568 [JLOI2011]飞行路线 题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在\(n\)个城市设有业务,设这些城市分别标记为0到\(n−1\ ...

  9. bzoj千题计划226:bzoj2763: [JLOI2011]飞行路线

    http://www.lydsy.com/JudgeOnline/problem.php?id=2763 这也算分层图最短路? dp[i][j]到城市i,还剩k次免费次数的最短路 #include&l ...

  10. bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

随机推荐

  1. fflush(stdin)与fflush(stdout)

    1.fflush(stdin): 作用:清理标准输入流,把多余的未被保存的数据丢掉.. 如: int main() { int num; char str[10]; cin>>num; c ...

  2. Linux系统安装gcc/g++详细过程

    下载: http://ftp.gnu.org/gnu/gcc/gcc-4.5.1/gcc-4.5.1.tar.bz2 浏览: http://ftp.gnu.org/gnu/gcc/gcc-4.5.1/ ...

  3. python控制流 If-else

        控制流 If-else 我们处理现实生活中的问题时会做出决定,就像决定买哪种相机或者怎样更好的打篮球.同样我们写计算机程序的时候也要做相同的事情.我们通过 if-else 语句来做决定,我们使 ...

  4. iOS中滤镜种类及相关介绍

  5. 如何使用ILAsm与ILDasm修改.Net exe(dll)文件

    一.背景 最近项目组新上项目,交付的时间比较急迫,原本好的分支管理习惯没有遵守好,于是出现下面状况: 多个小伙伴在不同的分支上开发. 原本QA环境也存在一个阻碍性的bug A 一位同事在QA环境发布了 ...

  6. hp MSA50 5盘RAID5重建为4盘RAID5怎么恢复数据

    [用户单位] XX省电视台[数据恢复故障描述] 一台HP 服务器,挂接一台HP MSA50磁盘阵列,内接5块1TB硬盘,原先结构为RAID5. 使用一段时间后,其中一块硬盘掉线,因RAID5支持一块硬 ...

  7. 一句话了解JAVA与大数据之间的关系

    大数据无疑是目前IT领域的最受关注的热词之一.几乎凡事都要挂上点大数据,否则就显得你OUT了.如果再找一个可以跟大数据并驾齐驱的IT热词,JAVA无疑是跟大数据并驾齐驱的一个词语.很多人在提到大数据的 ...

  8. day-7 一个简单的决策树归纳算法(ID3)python编程实现

    本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户 ...

  9. sublime安装 和 插件安装

    先从官网下载sublime   https://www.sublimetext.com/3 安装完毕后 快捷键ctrl+` 或者View->Show Console,输入如下代码(sublime ...

  10. python之路--day13---函数--三元表达式,递归,匿名函数,内置函数-----练习

    1.文件内容如下,标题为:姓名,性别,年纪,薪资 egon male 18 3000 alex male 38 30000 wupeiqi female 28 20000 yuanhao female ...