OpenCV 之 空间滤波
1 空间滤波
1.1 基本概念
空间域,在图像处理中,指的是像平面本身; 空间滤波,则是在像平面内,对像素值所进行的滤波处理。

如上图所示,假设点 (x, y) 为图像 f 中的任意点,中间正方形是该点的 3x3 邻域 (也称为 “滤波器”)
当该邻域,从图像的左上角开始,以水平扫描的方式,逐个像素移动,最后到右下角时,便会产生一幅新的图像。
1.2 滤波机制
若输入图像为 f(x, y),则经空间滤波后,输出图像 g(x, y) 为
$\quad g(x, y) = \sum \limits_{s=-a}^a \: \sum \limits_{t=-b}^b {w(s, t)\:f(x+s, y+t)} $,其中 w(s, t) 为滤波器模板

更形象的解释,如下图:卷积核(也即旋转180°的滤波器模板) 像手电筒一样,对图像 f(x, y) 中的像素,从左至右从上到下,逐个扫描计算后,便得到了输出图像 g(x, y)

1.3 相关和卷积
空间滤波中,相关和卷积,是两个容易混淆的概念,以下面的输入图像 f(x,y) 和 滤波器模板 w(x, y) 为例:

相关 (Correlation),和上述的滤波机制一样,即滤波器模板逐行扫描图像,并计算每个位置像素乘积和的过程。

卷积 (Convolution),和 "相关" 过程类似,但是要首先旋转 180°,然后再执行和 “相关” 一样的操作。
二维中的旋转 180°,等于沿一个坐标轴翻转该模板,然后再沿另一个坐标轴再次翻转该模板。

注意:如果滤波器模板是对称的,则相关和卷积得到的结果是一样的。
2 filter2D 和 flip
OpenCV 中,用户可自定义滤波器模板,然后使用 filter2D() 函数,对图像进行空间滤波
void filter2D (
InputArray src,
OutputArray dst,
int ddepth,
InputArray kernel,
Point anchor = Point(-,-),
double delta = ,
int borderType = BORDER_DEFAULT
)
其公式如下:
$ dst(x, y) = \sum \limits_{0 < x' <kernel.cols, \\ 0<y'<kernel.rows} \: kernel(x', y') * src(x+x'-anchor.x, y+y'-anchor.y) $
可以看出,锚点 $(anchor.x, anchor.y)$ 并不是 kernel 的镜像中心。
实际上,filter2D 求的是 相关,不是 卷积。
要想得到真正的卷积 (convolution),首先,使用 flip() 函数翻转 kernel,然后,设置新的锚点 $(kernel.cols - anchor.x - 1, kernel.rows -anchor.y -1)$
void flip (
InputArray src,
OutputArray dst,
int flipCode // 0, flip around x-axis; 1,flip around y-axis; -1, flip around both axes
);
3 代码示例
下面详细阐述,如何设计滤波器模板,配合 filter2D() 函数,实现图像的一阶和二阶偏导运算。
在 x 方向上,一阶和二阶偏导数的计算结果,如下图所示:

3.1 一阶偏导
图像在 x 和 y 方向的一阶偏导如下:
$\frac {\partial f}{\partial x} = f(x+1,y) - f(x,y)$
$\frac {\partial f}{\partial y} = f(x, y+1) - f(x, y)$
则对应的滤波器模板为 $K_{x} = \begin{bmatrix} -1 & 1 \end{bmatrix} $,$K_{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} $
3.2 二阶偏导
同样的,在 x 和 y 方向的二阶偏导如下:
$\frac {\partial f^2} {\partial x^2} = f(x+1, y) + f(x-1, y)- 2f(x,y)$
$\frac {\partial f^2}{\partial y^2} = f(x, y+1) + f(x, y-1)- 2f(x,y)$
$\frac {\partial f^2}{\partial x \partial y} = f(x+1, y+1) - f(x+1, y) - f(x, y+1)+ f(x,y)$
则各自的滤波器模板为 $K_{xx} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} $,$K_{yy} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} $,$K_{xy} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} $
3.3 代码实现
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp" using namespace cv; int main()
{
// 读取图像
Mat src = imread("test.bmp");
if(src.empty()) {
return -;
}
cvtColor(src, src, CV_BGR2GRAY); Mat kx = (Mat_<float>(,) << -, ); // 1行2列的 dx 模板
Mat ky = (Mat_<float>(,) << -, ); // 2行1列的 dy 模板 Mat kxx = (Mat_<float>(,) << , -, ); // 1行3列的 dxx 模板
Mat kyy = (Mat_<float>(,) << , -, ); // 3行1列的 dyy 模板
Mat kxy = (Mat_<float>(,) << , -, -, ); // 2行2列的 dxy 模板 // 一阶偏导
Mat dx, dy;
filter2D(src, dx, CV_32FC1, kx);
filter2D(src, dy, CV_32FC1, ky); // 二阶偏导
Mat dxx, dyy, dxy;
filter2D(src, dxx, CV_32FC1, kxx);
filter2D(src, dyy, CV_32FC1, kyy);
filter2D(src, dxy, CV_32FC1, kxy); // 显示图像
imshow("dx", dx);
imshow("dy", dy);
imshow("dxx", dxx);
imshow("dyy", dyy);
imshow("dxy", dxy); waitKey();
}
以袋装洗手液作为输入图像,得到的偏导图像如下:

参考资料:
OpenCV Tutorials / imgproc module / Making your own linear filters
<数字图像处理> 冈萨雷斯, 第3章 灰度变换与空间滤波
图像卷积与滤波的一些知识点,zouxy09
OpenCV 之 空间滤波的更多相关文章
- 13、OpenCV实现图像的空间滤波——图像平滑
1.空间滤波基础概念 1.空间滤波基础 空间滤波一词中滤波取自数字信号处理,指接受或拒绝一定的频率成分,但是空间滤波学习内容实际上和通过傅里叶变换实现的频域的滤波是等效的,故而也称为滤波.空间滤波主要 ...
- 14、OpenCV实现图像的空间滤波——图像锐化及边缘检测
1.图像锐化理论基础 1.锐化的概念 图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反.而且从算子可以看出来,平滑是基于对图像领域的加 ...
- OpenCV 之 图像平滑
1 图像平滑 图像平滑,可用来对图像进行去噪 (noise reduction) 或 模糊化处理 (blurring),实际上图像平滑仍然属于图像空间滤波的一种 (低通滤波) 既然是滤波,则图像中任 ...
- OpenCV 之 自定义滤波
图像处理中,"空间域" 指的是图像平面,因此,空间滤波 可定义为:在图像平面内对像素灰度值进行的滤波 1 空间滤波 1.1 滤波过程 如图,Filter 是一个 3x3 滤波核 ...
- opencv在图像显示中文
在图像定位和模式识别时,经常需要把结果标注到图片上,标注内容可以是数字字母.矩形框等(opencv支持的)或者是中文汉字(借助freetype). 1.显示数字/矩形框 #include <op ...
- opencv中Mat与IplImage,CVMat类型之间转换
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...
- opencv源码:cascadedetect
级联分类器检测类CascadeClassifier,提供了两个重要的方法: CascadeClassifier cascade_classifier; cascade_classifier.load( ...
- 基于OpenCV的车辆检测与追踪的实现
最近老师布置了一个作业,是做一个基于视频的车辆检测与追踪,用了大概两周的时间做了一个简单的,效果不是很理想,但抑制不住想把自己的一些认识写下来,这里就把一些网络上的博客整理一下分享给大家,希望帮助到大 ...
- OpenCV人脸识别Eigen算法源码分析
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...
随机推荐
- 一种CListCtrl自绘效果
- nginx把POST转GET请求解决405问题
405重定向,然后把POST转GET upstream local { server 10.0.1.11:81; } server { listen 81; server_name testf.xxx ...
- ng机器学习视频笔记(二) ——梯度下降算法解释以及求解θ
ng机器学习视频笔记(二) --梯度下降算法解释以及求解θ (转载请附上本文链接--linhxx) 一.解释梯度算法 梯度算法公式以及简化的代价函数图,如上图所示. 1)偏导数 由上图可知,在a点 ...
- poj 1423 打表/斯特林公式
对于n位数的计算,我们可以采用(int)log10(n) + 1的方法得到n的位数 第一种方法: 对于n!位数的计算,log10(n!) = log10(1) + log10(2) + ... + l ...
- 浅谈大型web系统架构(一)
目录 Web前端系统 负载均衡系统 数据库集群系统 缓存系统 分布式存储系统 分布式服务器管理系统 代码发布系统 动态应用,是相对于网站静态内容而言,是指以c/c++.php.Java.perl. ...
- DIV+CSS中的滤镜和模糊
在div+css中,经常会用到div和span 当内容比较多的时候,会用到div 当内容比较少的时候,会用到span 来看下面的代码: <!DOCTYPE html> <html&g ...
- python布尔类型
布尔类型 python当中下面的值在作为布尔表达式时,会被解释器看作False: 1.None: 2.False: 3.任何为0的数字类型,如:0,0.0,0j: 4.任何空序列,如:'',(),[] ...
- iOS-Runtime的那些事...编辑中....
Runtime-iOS的黑魔法,还是很好玩的,消息机制.方法替换简单记录了一点,持续更新.... 1.方法替换 在类load方法中,替换系统方法 + (void)load{ Method oldCol ...
- 玩转spring boot——简单登录认证
前言 在一个web项目中,某些页面是可以匿名访问的,但有些页面则不能.spring mvc提供了HandlerInterceptor接口来应对,只需要重写preHandle方法便可以实现此功能.那么使 ...
- 在高并发、高负载的情况下,如何给表添加字段并设置DEFAULT值?
在高并发.高负载的情况下,如何给表添加字段并设置DEFAULT值? 在Oracle 12c之前,当Oracle表数据量上亿时,对表执行“ALTER TABLE XXX ADD COLUMN_XX VA ...