论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

本文提出的模型叫MobileNet,主要用于移动和嵌入式视觉应用。该模型具有小巧、低延迟的特点。MobileNet在广泛的应用场景中具有有效性,包括物体检测,细粒度分类,人脸属性和大规模地理定位。

MobileNet架构

深度可分解卷积(Depthwise Separable Convolution)

MobileNet模型基于深度可分解卷积(depthwise separable convolutions),它由分解后的卷积组成,分解后的卷积就是将标准卷积分解成一个深度卷积(depthwise convolution)和一个1x1的点卷积(pointwise convolution)。深度卷积将每个卷积核应用于输入的每一个通道;然后,深度卷积的输出作为点卷积的输入,点卷积用1x1卷积来组合这些输入。下面两个图如下:

  一个标准的卷积层以DF x DF x M大小的feature map F作为输入,然后输出一个DG x DG x N的feature G,其中DF输入feature map的宽度和高度,M是输入通道数目;DG是输出feature map的宽度和高度,N是输出通道的个数。卷积核K的参数量为DK x DK x M x N,其中,DK是卷积核的宽度和高度。标准的卷积的计算代价是(stride=1,padding=same):

现在将卷积核进行分解,深度卷积的计算量为:

  点卷积的计算量为(公式中省略了1 x 1):

因此,深度可分解卷积的计算总量为:

深度可分解卷积与标准卷积的计算量做比较,如下:

MobileNet使用了大量的3 × 3的深度可分解卷积核,极大地减少了计算量(1/8到1/9之间),同时准确率下降的很少,相比其他的方法确有优势。

Network Structure and Training

MobileNet结构如下图。其中,第一层采用标准卷积,其它层均采用本文提出的深度可分解卷积。每一层后面跟着一个batchnorm和ReLU,除了最后一层全连接层直接接softmax。下采样是采用带stride的卷积实现的。最后,MobileNet总共有28层(深度卷积和点卷积分开计算)。

下图对比了标准卷积与深度可分解卷积的结构:

MobileNet将95%的计算时间用于有75%的参数的1×1卷积,作者采用tensorflow和RMSprop进行训练,因为模型比较小,过拟合不太容易,所以数据增强和规则化用的不多。

每一层的计算量如下:

Width Multiplier: Thinner Models

尽管模型已经很小,但是为了让模型更小和更快,本文又提出第一个超参数α,称为宽度乘数(Width Multiplier)。宽度乘数α的作用是使得网络的每一层都“变瘦”。对于一个给定的层和一个宽度乘数α,输入通道M变成αM,输出通道N变成αN。

加上宽度乘数α之后,深度可分解卷积的计算量变为:

其中,α∈(0,1],典型值是1,0.75,0.5和0.25。α=1是MobileNet的baseline,α<1是reduced MobileNets。宽度乘数在计算量和参数量上大概可以减少α²。

Resolution Multiplier: Reduced Representation

第二个用于减少网络计算量的超参数是分辨率乘数(Resolution Multiplier)ρ。分辨率乘数用来改变输入数据层的分辨率。

在α和ρ共同作用下,我们的深度可分离卷积网络的计算量为:

其中,ρ∈(0,1],ρ 如果为{1,6/7,5/7,4/7},则对应输入分辨率为{224,192,160,128}。ρ 参数的优化空间同样是 ρ² 左右。

  下图可以看出两个超参数在减少网络参数的上的作用。

Experiments

Model Choices

  表4中,同样是MobileNet的架构,使用可分离卷积,精度值下降1%,而参数仅为1/7。

表5中,深且瘦的网络比浅且胖的网络准确率高3%。

Model Shrinking Hyperparameters

表6中,α 超参数减小的时候,模型准确率随着模型的变瘦而下降。

表7中,ρ 超参数减小的时候,模型准确率随着模型的分辨率下降而下降。

下图显示了准确率和计算量的权衡。总共16个模型,其中α∈{1,0.75,0.5,0.25},ρ∈{224,192,160,128}。

下图是MobileNet与GoogleNet、VGG16的比较。

还有其他很多比较数据,不再详述。

参考:

http://blog.csdn.net/wfei101/article/details/78310226

[论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)的更多相关文章

  1. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  2. [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...

  3. 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...

  4. 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...

  5. 【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析

    目录 0. Paper link 1. Overview 2. Depthwise Separable Convolution 2.1 architecture 2.2 computational c ...

  6. Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    目录 1. 故事 2. MobileNet 2.1 深度可分离卷积 2.2 网络结构 2.3 引入两个超参数 3. 实验 本文提出了一种轻量级结构MobileNets.其基础是深度可分离卷积操作. M ...

  7. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...

  8. 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读

    2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...

  9. 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications

    论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...

随机推荐

  1. 微信扫一扫JSSDK 扫一扫报错 invalid signature 问题

    交代一下业务场景 在在四个页面都需要用到扫一扫去扫二维码.然而在图三-我的订单 下单中这个页面扫一扫不起效,当时就郁闷了为啥其他页面有用,这里却没用,开始调试吧. 报错信息是签名验证不成功. 自己去打 ...

  2. 【Linux】 CentOS6.5安装Python2.7以及pip等工具

    原文地址 CentOS6.5下是原来就有python的,我的镜像里面自带的python版本是2.6.6.如果想要自己更新一个更加新的python版本可以这么做: 安装python2.7安装包. 从官网 ...

  3. Algorithm --> 最长公共子序列(LCS)

      一.什么是最长公共子序列     什么是最长公共子序列呢?举个简单的例子吧,一个数列S,若分别是两个或多个已知序列的子序列,且是所有符合条件序列中最长的,则S称为已知序列的最长公共子序列. 举例如 ...

  4. Ubuntu16.0.4下搭建pycharm 2018.3.22

    一.首先安装Java jdk Java JDK有两个版本,一个开源版本Openjdk,还有一个Oracle官方版本jdk.下面记录在Ubuntu 16.04上安装Java JDK的步骤. 安装open ...

  5. linux scp 命令

    scp 命令 scp 命令 意思是 secure copy 即安全拷贝,可以把它看做是 cp 命令的高级版,可以跨主机拷贝. 经常用来在局域网内不同主机之间分享文件,或者在本机与远程主机中分享文件. ...

  6. ibatis.net 入门demo 实现基本增删改查

    1.项目架构体系  DAO(数据访问层)   Domain(实体层)  Text(表示层) 2.比较重要的是需要添加两个dll的引用,以及两个配置文件和一个XML文件 两个 IbatisNet.Com ...

  7. 【Java EE】从零开始写项目【总结】

    从零开发项目概述 最近这一直在复习数据结构和算法,也就是前面发出去的排序算法八大基础排序总结,Java实现单向链表,栈和队列就是这么简单,十道简单算法题等等... 被虐得不要不要的,即使是非常简单有时 ...

  8. JavaScript(第十五天)【匿名函数和闭包】

      学习要点: 1.匿名函数 2.闭包 匿名函数就是没有名字的函数,闭包是可访问一个函数作用域里变量的函数.声明:本节内容需要有面向对象和少量设计模式基础,否则无法听懂.(所需基础15章的时候已经声明 ...

  9. 从0开始的LeetCode生活—001-Two Sum

    题目: Given an array of integers, return indices of the two numbers such that they add up to a specifi ...

  10. Python 实现火车票查询工具

    注意:由于 12306 的接口经常变化,课程内容可能很快过期,如果遇到接口问题,需要根据最新的接口对代码进行适当修改才可以完成实验. 一.实验简介 当你想查询一下火车票信息的时候,你还在上 12306 ...