P3960 列队

题意

题目描述

Sylvia 是一个热爱学习的女孩子。

前段时间,Sylvia 参加了学校的军训。众所周知,军训的时候需要站方阵。

Sylvia所在的方阵中有\(n \times m\)名学生,方阵的行数为\(n\),列数为\(m\)。

为了便于管理,教官在训练开始时,按照从前到后,从左到右的顺序给方阵中的学生从\(1\)到\(n \times m\)编上了号码(参见后面的样例)。即:初始时,第\(i\)行第\(j\)列的学生的编号是\((i-1) \times m + j\)。

然而在练习方阵的时候,经常会有学生因为各种各样的事情需要离队。在一天中,一共发生了\(q\)件这样的离队事件。每一次离队事件可以用数对\((x,y)(1 \le x \le n, 1 \le y \le m)\)描述,表示第\(x\)行第\(y\)列的学生离队。

在有学生离队后,队伍中出现了一个空位。为了队伍的整齐,教官会依次下达这样的两条指令:

向左看齐。这时第一列保持不动,所有学生向左填补空缺。不难发现在这条指令之后,空位在第\(x\)行第\(m\)列。

向前看齐。这时第一行保持不动,所有学生向前填补空缺。不难发现在这条指令之后,空位在第\(n\)行第\(m\)列。

教官规定不能有两个或更多学生同时离队。即在前一个离队的学生归队之后,下一个学生才能离队。因此在每一个离队的学生要归队时,队伍中有且仅有第\(n\)行第\(m\)列一个空位,这时这个学生会自然地填补到这个位置。

因为站方阵真的很无聊,所以Sylvia想要计算每一次离队事件中,离队的同学 的编号是多少。

注意:每一个同学的编号不会随着离队事件的发生而改变,在发生离队事件后方阵中同学的编号可能是乱序的。

输入输出格式

输入格式:

输入共\(q+1\)行。

第\(1\)行包含\(3\)个用空格分隔的正整数\(n,m,q\),表示方阵大小是\(n\)行\(m\)列,一共发生了\(q\)次事件。

接下来\(q\)行按照事件发生顺序描述了\(q\)件事件。每一行是两个整数\(x,y\),用一个空格分隔,表示这个离队事件中离队的学生当时排在第\(x\)行第\(y\)列。

输出格式:

按照事件输入的顺序,每一个事件输出一行一个整数,表示这个离队事件中离队学生的编号。

输入输出样例

输入样例:

2 2 3
1 1
2 2
1 2

输出样例:

1
1
4

说明

【输入输出样例说明】

列队的过程如上图所示,每一行描述了一个事件。 在第一个事件中,编号为\(1\)的同学离队,这时空位在第一行第一列。接着所有同学向左标齐,这时编号为\(2\)的同学向左移动一步,空位移动到第一行第二列。然后所有同学向上标齐,这时编号为\(4\)的同学向上一步,这时空位移动到第二行第二列。最后编号为\(1\)的同学返回填补到空位中。

【数据规模与约定】

数据保证每一个事件满足\(1 \le x \le n,1 \le y \le m\)

思路

wwx你在做什么? --diggersun

列队。 --logeadd

...

wwx列队怎么做呀? --Uranus

你可以对每一排开一棵\(Splay\),然后用动态开点优化空间...诶你别走啊! --logeadd

身为蒟蒻的我不会任何高级数据结构,所以只能用简单的线段树做了这道题。

然而这题空间上有限制,只能用动态开点线段树了。今天晚上用这道题做模板,学习了动态开点,顺便也做了这道题。

进入正题。我们先思考题目操作的意义:

  1. 离队一个人,相当于单点询问和删除。
  2. 向左看齐,相当于该行的最后一列少了一个人,最后一列的该行少了一个人。
  3. 向前看齐后离队人进队,相当于最后一列结尾添加了一个人。

Q:那么什么数据结构支持单点询问、单点删除、单点添加呢?

A:\(Splay\)(被打死

A:线段树和树状数组(正解!

根据对于操作的分析,我们在每一行的前\((m-1)\)个位置开一棵线段树,再对于最后一列单独开一棵线段树,就能完成所有操作了。

具体实现的话,我们在线段树的每一个结点上用\(sz\)数组储存该结点下还有多少个人,删点时直接暴力移除对应位置上的点,然后\(update\)时每个祖先节点的\(sz\)都减一,查询时按照\(sz\)左右跳查找,加点时向线段树的末尾处加入一个点即可。

再来思考空间问题。对于线段树的大小,因为有\(q\)次询问,最坏情况下全部插入操作在同一行,所以我们每一行线段树的大小是\((m+q)\)的,每一列线段树的大小是\((n+q)\)的,总的空间大小为\(((m+q)(n-1)+(n+q))\),而单是一个\(m \times n\)的空间我们已经承受不住了,期望得分也只有\(70\)了,这对于要AK比赛的logeadd巨佬来说是显然不够的所以我们要运用一个优秀的操作:动态开点。

想想普通线段树的\(lazytag\)标签的意义:如果我查询到了这个结点,那么我就\(pushdown\),因为只有这种情况下该结点以及其儿子结点才有可能对答案有贡献;相反,如果我一直不查询这个结点,我就只保存更新的值而不向下传递,因为此时这个值对于答案好毫无贡献。而动态开点也一样,如果我们一直没有询问一段区间,我们就一直不去建那个区间的结点。而一旦查询到了,我们就建结点。

实际操作起来是怎么样的呢?比如说我们查询单点,顺便把它删掉(你会发现在上面的分析中这两个操作总是连在一起的),就这么写:

LL get_sz(LL l,LL r)//先看下面那个函数
{
if(now==n+1)//最后一列
{
if(r<=n) return r-l+1;//查询一开始就存在的区间,因为这一段还没有查询过,所以这一段上人是满的
if(l<=n) return n-l+1;//r已经超过了区间,但是l还在区间中,而n是一开始就存在的人的结尾,所以总数是n-l+1
return 0;//都是新结点,在任何操作之前都没有人
}//在行数上建立的结点
if(r<m) return r-l+1;//在之前就存在,同上
if(l<m) return m-l;//在之前有一部分存在,同上
return 0;//全都不存在,同上
}
LL ask(LL &id,LL l,LL r,LL x)//id为当前结点编号,l,r为当前区间,x为要查询的点在线段树上的位置
{
if(!id)//还没有开这个点的情况
{
id=++cnt;//开点
sz[id]=get_sz(l,r);//获取当前结点管理的区间中的人数
if(l==r)//到了最后一个点,要记录人的编号了
{
if(now==n+1) val[id]=l*m;//最后一列的编号统计
else val[id]=(now-1)*m+l;//第一列的编号统计
}
}
sz[id]--;//这一段要少个人,直接--
if(l==r) return val[id];//找到那个人了,溜了溜了
LL mid=(l+r)>>1;//继续往下找qwq
if((!ls[id]&&x<=(mid-l+1))||sz[ls[id]]>=x) return ask(ls[id],l,mid,x);//在左儿子就能解决问题
else//要找右儿子才能解决问题
{
if(!ls[id]) x-=(mid-l+1);//统计差多少个人在能找到
else x-=sz[ls[id]];//同上
return ask(rs[id],mid+1,r,x);//往右儿子找
}
}

同样的,我们处理单点加入时这样处理:

void change(LL &id,LL l,LL r,LL x,LL v)//x还是表示插入位置,v为插入的权值
{
if(!id)//建点
{
id=++cnt;//操作都是一样的
sz[id]=get_sz(l,r);
if(l==r) val[id]=v;//这里就不用特判是在最后一列还是别的了
}
sz[id]++;
if(l==r) return ;//改完了,溜了溜了
LL mid=(l+r)>>1;
if(x<=mid) change(ls[id],l,mid,x,v);//只要改左儿子
else change(rs[id],mid+1,r,x,v);//只要改右儿子
}

主要代码就到这里结束了,其实码量也不大不是吗?不过还是希望今年的数据结构题能简单一点\(qwq\)。

怨念--;

NOIP rp++;

AC代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=3e5+5;
const LL MAXM=1e7;
LL n,m,q,p,now;
LL cnt,rt[MAXN],ord[MAXN],sz[MAXM],ls[MAXM],rs[MAXM],val[MAXM];
LL read()
{
LL re=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
LL get_sz(LL l,LL r)
{
if(now==n+1)
{
if(r<=n) return r-l+1;
if(l<=n) return n-l+1;
return 0;
}
if(r<m) return r-l+1;
if(l<m) return m-l;
return 0;
}
LL ask(LL &id,LL l,LL r,LL x)
{
if(!id)
{
id=++cnt;
sz[id]=get_sz(l,r);
if(l==r)
{
if(now==n+1) val[id]=l*m;
else val[id]=(now-1)*m+l;
}
}
sz[id]--;
if(l==r) return val[id];
LL mid=(l+r)>>1;
if((!ls[id]&&x<=(mid-l+1))||sz[ls[id]]>=x) return ask(ls[id],l,mid,x);
else
{
if(!ls[id]) x-=(mid-l+1);
else x-=sz[ls[id]];
return ask(rs[id],mid+1,r,x);
}
}
void change(LL &id,LL l,LL r,LL x,LL v)
{
if(!id)
{
id=++cnt;
sz[id]=get_sz(l,r);
if(l==r) val[id]=v;
}
sz[id]++;
if(l==r) return ;
LL mid=(l+r)>>1;
if(x<=mid) change(ls[id],l,mid,x,v);
else change(rs[id],mid+1,r,x,v);
}
int main()
{
n=read(),m=read(),q=read();
p=max(n,m)+q;
while(q--)
{
LL x=read(),y=read(),z;
if(y==m) now=n+1,z=ask(rt[now],1,p,x);
else now=x,z=ask(rt[now],1,p,y);
printf("%lld\n",z);
now=n+1;
change(rt[now],1,p,n+(++ord[now]),z);
if(y!=m)
{
z=ask(rt[now],1,p,x),now=x;
change(rt[now],1,p,m-1+(++ord[now]),z);
}
}
return 0;
}

Luogu P3960 列队(动态开点线段树)的更多相关文章

  1. 洛谷P3960 列队(动态开节点线段树)

    题意 题目链接 Sol 看不懂splay..,看不懂树状数组... 只会暴力动态开节点线段树 观察之后不难发现,我们对于行和列需要支持的操作都是相同的:找到第\(k\)大的元素并删除,在末尾插入一个元 ...

  2. NOIP2017 列队——动态开点线段树

    Description: Sylvia 是一个热爱学习的女♂孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有n×m名学生,方阵的行数为  ...

  3. [Vani有约会]雨天的尾巴——树上差分+动态开点线段树合并

    题目描述 首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋z类型的救济粮. 然后深绘里想知道,当所 ...

  4. [2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)

    题目大意 给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列. 其中,n满足小于500000,序列中的正整数小于10^9 题解(引自mzx神 ...

  5. [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...

  6. 【BZOJ-4636】蒟蒻的数列 动态开点线段树 ||(离散化) + 标记永久化

    4636: 蒟蒻的数列 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 247  Solved: 113[Submit][Status][Discuss ...

  7. codeforces 893F - Physical Education Lessons 动态开点线段树合并

    https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...

  8. codeforces 915E - Physical Education Lessons 动态开点线段树

    题意: 最大$10^9$的区间, $3*10^5$次区间修改,每次操作后求整个区间的和 题解: 裸的动态开点线段树,计算清楚数据范围是关键... 经过尝试 $2*10^7$会$MLE$ $10^7$会 ...

  9. CF915E Physical Education Lessons 动态开点线段树

    题目链接 CF915E Physical Education Lessons 题解 动态开点线段树 代码 /* 动态开点线段树 */ #include<cstdio> #include&l ...

随机推荐

  1. springboot-配置多数据源之番外篇(分包实现)

    场景: 随着业务发展,系统连接多数据库成为常态,继前面AOP的实现方式之后,这里记录一下分包实现的方式. 实现:  1.pom.xml <?xml version="1.0" ...

  2. java-day06

    面向过程 每一个具体的步骤都亲力亲为,详细处理每一个细节 面向对象 不关心具体步骤,而是找一个已经具有该功能的人来帮我做事 特点 封装性 继承性 多态性 类 是一组相关属性和行为的集合 成员变量(属性 ...

  3. python函数基础(函数的定义和调用)

    函数的定义 python定义函数使用def关键字 return[表达式]语句用于退出函数,选择性的向调用方返回一个表达式,不带参数值的return语句返回none def 函数名(参数列表): 函数体 ...

  4. open 和 release

    我们开始在真实的 scull 函数中使用它们. open 方法   open 方法提供给驱动来做任何的初始化来准备后续的操作. 在大部分驱动中, open 应当 进行下面的工作: 检查设备特定的错误( ...

  5. Android开发 MediaPlayer将视频播放时尺寸适配完美

    前言 视频播放有一个较为蛋疼的问题,那就是尺寸适配.如果不做尺寸适配视频将会变形拉伸或者压缩.下面我就介绍个人实现的算法. 满足一边的算法 满足一边?你可能是疑问是什么意思.意思是就是始终将视频的高度 ...

  6. SPOJ - LOCKER

    SPOJ - LOCKERhttps://vjudge.net/problem/45908/origin暴力枚举2-102 23 34 2 25 2 36 3 37 2 2 38 2 3 39 3 3 ...

  7. odoo 下 get_object_reference 函数

    get_object_reference是 ir.model.data 模块中下的一个函数 该函数通过调用ir.model.data 模块中另外一个函数 xmlid_lookup 返回结果 def g ...

  8. Joomla - 模块系统(新建模块、模块类别、自定义模块)

    Joomla - 模块系统,模块配合模板的布局设置.菜单分配.权限分配能创建出一个内容丰富且易于管理的高度自定义前端页面架构 一.新建模块 进入后台,点击顶栏菜单 扩展管理 -> 模块管理 ,进 ...

  9. win10系统,vbox下安装centos6/7,挂载实现目录共享

    用下载好的iso文件,新建虚拟机(所有步骤默认下一步即可). 我用的centos版本:CentOS-7-x86_64-Minimal-1908.iso ISO下载地址 设置虚拟机(指定好镜像后,先不要 ...

  10. python 编程 一次错误记录 -1073740791

    原因是发生在我错把类当做实例化对象使用了