#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size()) typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head int _,n;
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--) {
mul(res,res,k);
if ((n>>p)&) {
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
while (~scanf("%d",&n)) {
vector<int>v;
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
//VI{1,2,4,7,13,24}
printf("%d\n",linear_seq::gao(v,n-));
}
}

杜教筛BM的更多相关文章

  1. 51nod 1244 莫比乌斯函数之和(杜教筛)

    [题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...

  2. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  3. 杜教筛 && bzoj3944 Sum

    Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...

  4. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  5. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  8. hihocoder #1456 : Rikka with Lattice(杜教筛)

    hihocoder #1456 : Rikka with Lattice(杜教筛) 题意 : 给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部). ...

  9. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

随机推荐

  1. Decorator - 装饰器

    装饰器 Decorator, 先来看看对 decorator 这个名词的解释, 一个可调用的对象 A (decorator), 返回另一个可调用的对象 B, 在可调用的对象 C 的定义体之前通过语法 ...

  2. Javase-坦克大战小游戏,为什么会出现上方向和左方向的子弹不能发射的情况?检查了好久,有大佬帮帮忙吗,小白睡不着

    //为什么会出现上方向和左方向的子弹不能发射的情况?检查了好久,有大佬帮帮忙吗,小白睡不着 package TanKe.lbl;import java.awt.*;import java.awt.ev ...

  3. To use the new Server Discover and Monitoring engine, pass option { useUnifiedTopology: true } to the MongoClient constructor.

    mongoose报错:DeprecationWarning: current Server Discovery and Monitoring engine is deprecated, and wil ...

  4. 《Java 8 in Action》Chapter 11:CompletableFuture:组合式异步编程

    某个网站的数据来自Facebook.Twitter和Google,这就需要网站与互联网上的多个Web服务通信.可是,你并不希望因为等待某些服务的响应,阻塞应用程序的运行,浪费数十亿宝贵的CPU时钟周期 ...

  5. Linux运维--实践-Rally

    1.rally简介 OpenStack Rally 是一个自动化测试工具,社区希望通过 Rally 来解答 "How does OpenStack work at scale?(如何规模化运 ...

  6. Mock模拟数据,前后端分离

    安装 使用npm安装: npm install mockjs; 或直接<script src="http://mockjs.com/dist/mock.js">< ...

  7. Java高级项目实战03:CRM系统数据库设计

    接上一篇:Java高级项目实战02:客户关系管理系统CRM系统模块分析与介绍 欢迎点击回顾,接下来我们说说 CRM系统数据库设计. 我们根据产品的原型搞以及UI组的设计稿, 接下来就要设计数据库, 一 ...

  8. Centos 7 使用(Service iptables stop/start)关闭/打开防火墙 Failed to stop iptables.service: Unit iptables.service not loaded.

    背景: 测试部署NetCore 项目到linux 系统时,窗口显示项目部署成功:但是本机无法访问(linux 在虚拟机上[ centos 7.6] );  如下图↓ 能够相互ping  通,(Xshe ...

  9. Xcode-一些小问题(配置包路径,配置文件路径。。。)

    1.真机配置包路径 /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport 2.配置文 ...

  10. 转载整理:SublimeText3 Emmet失效问题以及win7 pyV8安装问题

    SublimeText3 Emmet安装问题网上已经很多帖子了,这个简单,主要对win7 64位我本人遇到的Emmet好多快捷功能无法用(比如ul>li*4  Tab无法生成)问题做了整理!搜了 ...