#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size()) typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head int _,n;
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--) {
mul(res,res,k);
if ((n>>p)&) {
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
while (~scanf("%d",&n)) {
vector<int>v;
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
//VI{1,2,4,7,13,24}
printf("%d\n",linear_seq::gao(v,n-));
}
}

杜教筛BM的更多相关文章

  1. 51nod 1244 莫比乌斯函数之和(杜教筛)

    [题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...

  2. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  3. 杜教筛 && bzoj3944 Sum

    Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...

  4. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  5. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  8. hihocoder #1456 : Rikka with Lattice(杜教筛)

    hihocoder #1456 : Rikka with Lattice(杜教筛) 题意 : 给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部). ...

  9. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

随机推荐

  1. DOCKER 学习笔记9 Kubernetes (K8s) 弹性伸缩容器 下

    前言 从上一篇看来,我们已经对于Kubernetes ,通过minikube 建立集群,而后使用kubectl 进行交互,对Deployment 部署以及服务的暴露等.这节,将学习弹性的将服务部署到多 ...

  2. LeetCode 126. Word Ladder II 单词接龙 II(C++/Java)

    题目: Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transfo ...

  3. k8s系列---部署集群

    docer启动出错 [root@centos-minion yum.repos.d]# systemctl start docker Job for docker.service failed bec ...

  4. Linux文本界面字体颜色修改

    环境 基于centos 6.5 在文本界面 系统目录的字体颜色是 黑底蓝字  严重看不清楚,对此作出修改 使用 vi 编辑   进入  /etc/DIR_COLORS 找到“DIR 01;34   # ...

  5. ORB-SLAM2 论文&代码学习 —— 单目初始化

    转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12358458.html 本文要点: ORB-SLAM2 单目初始化 ...

  6. C语言结构体定义位域,从bit0开始,依次到最高bit位

    位域是指信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C语言又提供了一种数据 ...

  7. centos7安装Elasticsearch及Es-head插件详细教程(图文)

    懒惰了很久,今天来写一下Elasticsearch在centos7上安装教程以及安装过程中可能出现的报错解决方式,有不对的地方,烦请各位看官多多指教! 一.ES安装 1.环境检查 确保有java环境, ...

  8. linux中的链接命令

    ln 解释 命令名称:ln 命令英文原意:link 命令所在路径:/bin/ln 执行权限:所有用户 功能描述:生成链接文件 语法 ln -s [源文件] [目标文件] -s 创建软链接 示例 # 创 ...

  9. Java连载89-SorteSet、Comparable接口

    一. SortedSet集合直接举例 package com.bjpowernode.java_learning; import java.util.*; /** * java.util.Set * ...

  10. [MongoDB] 使用PHP根据_id字段查询数据

    mongo中的_id是一个objectid对象类型,不管是查询时作为条件,还是列表时展示内容,都需要进行一下抓换 查询时要转为objectid对象 列表时要把对象转成字符串覆盖回_id字段 $filt ...