#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size()) typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head int _,n;
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--) {
mul(res,res,k);
if ((n>>p)&) {
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
while (~scanf("%d",&n)) {
vector<int>v;
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
//VI{1,2,4,7,13,24}
printf("%d\n",linear_seq::gao(v,n-));
}
}

杜教筛BM的更多相关文章

  1. 51nod 1244 莫比乌斯函数之和(杜教筛)

    [题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...

  2. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  3. 杜教筛 && bzoj3944 Sum

    Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...

  4. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  5. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  8. hihocoder #1456 : Rikka with Lattice(杜教筛)

    hihocoder #1456 : Rikka with Lattice(杜教筛) 题意 : 给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部). ...

  9. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

随机推荐

  1. 微信小程序开发技巧总结 (一)-- 数据传递和存储

    结合自己在平时的开发中遇到的各种问题,和浏览各种问题的解决方案总结出一些自己在日常开发中常用的技巧和知点,希望各位不吝斧正. 1.短生命周期数据存储 以小程序启动到彻底关闭为周期的的数据建议存储在ap ...

  2. Part2-求AX=b的最优解

    自己一边听课一边记得,参考网上广为流传的那本<MIT线性代数笔记>,转成Latex上传太麻烦,直接截图上传了,需要电子版的可以私信我.

  3. Python socket 基础(Client) - Foundations of Python Socket

    Python socket 基础- Foundations of Python Socket 建立socket - establish socket import socket s = socket. ...

  4. 第三篇 SpringBoot整合log4j2详解

    源代码:https://pan.baidu.com/s/1d1Lwv1gIvVNltIKVWeEseA 提取码:wff0 SpringBoot整合Log4j2步骤: 1.删除spring-boot-s ...

  5. 广西Ukey登录需求

    1.前端控制浏览器用户安装证书[1.检测,2,提示用户强制安装] JITComVCTK_S.exe 2.前端调用接口获取认证原文 3.对前端认证原文处理,提交请求到后端 摘算法处理后的认证原文 认证原 ...

  6. 不会用数据可视化大屏?一招教你轻松使用数据可视化BI软件创建农业公司运营数据分析大屏

    灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作,无需任何经验就可以创建属于你自己的大屏.大家可以在他们的官网下载软件.   本文以农业公司运营数据分析大屏 ...

  7. 00.ES6简介

    ES6 简介 ECMAScript 和 JavaScript 的关系 JavaScript是由ECMAScript组织维护的,ES6的名字就取自ECMAScript中的E和S,6的意思是已经发布到第6 ...

  8. Android中使用AlertDialog实现几种不同的对话框

    场景 app中常见的对话框. 简单的带确定取消按钮的对话框 带列表的对话框 带单项选择的对话框 带多项选择的对话框 注: 博客: https://blog.csdn.net/badao_liumang ...

  9. Linux 文件|目录 属性

    文件属性 ls  -l 列出的文件|目录信息如下 第一个字符指定类型,-是文件,d是目录(dir). 后面9个字符是该文件|目录的用户权限:r读,w写,x执行. 执行是指:如果该文件是一个可执行文件, ...

  10. OBS使用教程

    OBS使用教程 OBS使用教程:录屏热键的设置 视频:基础画布分辨率1920/1080 1366,768输出缩放分辨率常用FPS值 30或者60 输出:输出模式:高级录像:编码器x264码率控制 CB ...