题目链接

https://www.luogu.org/problem/P2022

题目描述

让我们来考虑1到N的正整数集合。让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9。

定义K在N个数中的位置为Q(N,K),例如Q(11,2)=4。现在给出整数K和M,要求找到最小的N,使得Q(N,K)=M。

输入格式

输入文件只有一行,是两个整数K和M。

输出格式

输出文件只有一行,是最小的N,如果不存在这样的N就输出0。


#include<bits/stdc++.h>
#include<math.h>
using namespace std;
int main()
{
long long k, m, i = 0, j, l = 0, a[30], b = 0, d, c, e, n = 0, aa = 0, bb;
cin >> k; //输入k
cin >> m; //输入m
c = k; //将k赋给c,不让k变化
while (c) //将k存到数组a[]里
{
a[i] = c % 10;
c = c / 10;
i++;
}
b = 0;
e = i;
d = e;
for (d; n <= i + 1; d--)
{
for (j = 1; j <= d; j++)
{
l = pow(10, j - 1) + l;
}
if (n == 0)
b = (a[i - 1 - n] - 1)*l + b;
else
b = a[i - 1 - n] * l + b;
n++;
l = 0;
}
b = b + i;//最小值为k时,k的排名
if (b == m) {
cout << k;
}
else if (m < b) { cout << 0; }
else
for (e = i;;e++)
{
bb = k * pow(10, e - i + 1) - pow(10, e) + aa;
if (m - b <= bb)
{
cout << setprecision(30) << m - b - 1 - aa + pow(10, e);
break;
}
aa = k * pow(10, e - i + 1) - pow(10, e) + aa;
}
return 0;
}

  

方法

先考虑当最大的整数为k时,k的位置。 代码如下:

for (d; n <= i + ; d--)
{
for (j = ; j <= d; j++)
{
l = pow(, j - ) + l;
}
if (n == )
b = (a[i - - n] - )*l + b;
else
b = a[i - - n] * l + b;
n++;
l = ;
}
b = b + i;//最小值为k时,k的排名

其中数组a[ ]里存着k

这段代码的讲解如下,为方便理解,令k=453,则有四种数字在k前边:

  • (1)首位以1、2、3开头的数字,个数为(1+10+100)×(4-1)
  • (2)首位为4的数,次位小于5的数,个数为(1+10)×(5-0)+1
  • (3)首位为4,次位为5,第3位小于3的数,个数为1×(3-0)
  • (4)首位或第二位与K相同,但总位数小于k。两个,分别为4、45

通过这种方法就求出来了最大值为k时的排名b。

  • 如果m=b,那显然最小值n=k;
  • 如果m<b,则不存在n,因为该组数的最小值肯定是>=k的。
  • 如果m>b,则一定存在n。

下面讨论m>b的情况。

分析易知,若m>b,则n的位数肯定大于k的位数。K=453有3位,分析知4位数里排在453前边的数字有:

  • 1000-1999,2000-2999,3000-3000,4000-4529

数字的数量 用代码表示为

*pow(,-+)-pow(,)
//pow(10,4-3+1)中的4代表4位数
3代表K的位数,pow(,)里的4代表4位数

  • (m-3位数字中k的排名)<4位数里排在453前边的数字个数时
  • 则所求数字n必然为四位数字,且n在1000-1999,2000-2999,3000-3000,4000-4529范围内
  • n=(m-3位数字中k的排名-1)+1000。 若
  • (m-3位数字中k的排名)>4位数里排在453前边的数字个数,则应继续判断(m-4位数字中k的排名)与5位数里排在453前边的数字个数大小,直到 (m-i位数字中453的排名)<与(i+1)位数里排在453前的数字量,此时即可得到所求的最小数字
  • n=(m-i位数字中453的排名-1)+pow(10, i);

以上就是这道题的题解

洛谷【P2022 有趣的数】 题解的更多相关文章

  1. 洛谷 P2022 有趣的数 解题报告

    P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...

  2. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  3. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  4. 洛谷P2657 [SCOI2009]windy数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2657 题目大意:找区间 \([A,B]\) 范围内 不含前导零 且 相邻两个数字之差至少为2 的正整数的个数. 题目分 ...

  5. P2022 有趣的数

    P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...

  6. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

  7. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  8. 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)

    洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...

  9. 【洛谷P2022】有趣的数

    有趣的数 题目链接 首先求出1~k中有多少个在k前面的数的个数,若>m,则无解 比如12345,从第一位开始, 1 0~1 共2个 1-0+1 12  10~12共3个    12-10+1 1 ...

  10. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

随机推荐

  1. 纯JavaScript实现页面行为的录制

    在网上有个开源的rrweb项目,该项目采用TypeScript编写(不了解该语言的可参考之前的<TypeScript躬行记>),分为三大部分:rrweb-snapshot.rrweb和rr ...

  2. JDBC访问数据库的具体步骤(MySql + Oracle + SQLServer)

    * 感谢DT课堂颜群老师的视频讲解(讲的十分仔细,文末有视频链接) import java.sql.Connection; import java.sql.DriverManager; import ...

  3. vue子向父传值

    要弄懂子组件如何向父组件传值,需要理清步骤 子组件向父组件传值的步骤 一:子组件在组件标签上通过绑定事件的方式向父组件发射数据 <!--html--><template id=&qu ...

  4. Python socket 基础(Server) - Foundations of Python Socket

    Python socket 基础 Server - Foundations of Python Socket 通过 python socket 模块建立一个提供 TCP 链接服务的 server 可分 ...

  5. SHELL下打包文件

    SHELL下打包文件 在我们拿下webshell的时候,想要获取数据或者源码往往会用菜刀或者蚁剑去打包,但是这个时候往往就会出现很多问题,列如打包失败,或者是打包得不完整等等. 这个时候如果对方是wi ...

  6. ElasticSearch集群-Windows

    概述 ES集群是一个P2类型的分布式系统,除了集群状态管理以外,其他所有的请求都可以发送到集群内任意一台节点上,这个节点可以自己找到需要转发给哪些节点,并且直接跟这些节点通信.所以,从网络架构及服务配 ...

  7. Linux安装Redis、后台运行、系统自启动

    Redis是用C语言编写的开源免费的高性能的分布式内存数据库,基于内存运行并支持持久化的NoSQL数据库. 安装 1)从官网http://download.redis.io/releases/下载re ...

  8. 查找第K大的值

    这种题一般是给定N个数,然后N个数之间通过某种计算得到了新的数列,求这新的数列的第K大的值 POJ3579 题意: 用$N$个数的序列$x[i]$,生成一个新序列$b$. 新的序列定义为:对于任意的$ ...

  9. python-21-生成器又是什么东西?

    前言 生成器,只要含有yield关键字的函数都是生成器函数,但yield不能和return共用且需要写在函数内. 生成器,是返回一个迭代器的函数,说白了生成器也是迭代器. 一.生成器简介 1.只要含有 ...

  10. mysql 查询出现 "this is incompatible with sql_mode=only_full_group_by"错误解决方案,以及个人rpm方式重装所遇到的问题备份

    一.错误说明        这个错误发生在mysql 5.7 版本及以上版本会出现的问题:        mysql .7版本默认的sql配置是:sql_mode="ONLY_FULL_GR ...