洛谷【P2022 有趣的数】 题解
题目链接
https://www.luogu.org/problem/P2022
题目描述
让我们来考虑1到N的正整数集合。让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9。
定义K在N个数中的位置为Q(N,K),例如Q(11,2)=4。现在给出整数K和M,要求找到最小的N,使得Q(N,K)=M。
输入格式
输入文件只有一行,是两个整数K和M。
输出格式
输出文件只有一行,是最小的N,如果不存在这样的N就输出0。
#include<bits/stdc++.h>
#include<math.h>
using namespace std;
int main()
{
long long k, m, i = 0, j, l = 0, a[30], b = 0, d, c, e, n = 0, aa = 0, bb;
cin >> k; //输入k
cin >> m; //输入m
c = k; //将k赋给c,不让k变化
while (c) //将k存到数组a[]里
{
a[i] = c % 10;
c = c / 10;
i++;
}
b = 0;
e = i;
d = e;
for (d; n <= i + 1; d--)
{
for (j = 1; j <= d; j++)
{
l = pow(10, j - 1) + l;
}
if (n == 0)
b = (a[i - 1 - n] - 1)*l + b;
else
b = a[i - 1 - n] * l + b;
n++;
l = 0;
}
b = b + i;//最小值为k时,k的排名
if (b == m) {
cout << k;
}
else if (m < b) { cout << 0; }
else
for (e = i;;e++)
{
bb = k * pow(10, e - i + 1) - pow(10, e) + aa;
if (m - b <= bb)
{
cout << setprecision(30) << m - b - 1 - aa + pow(10, e);
break;
}
aa = k * pow(10, e - i + 1) - pow(10, e) + aa;
}
return 0;
}
方法
先考虑当最大的整数为k时,k的位置。 代码如下:
for (d; n <= i + ; d--)
{
for (j = ; j <= d; j++)
{
l = pow(, j - ) + l;
}
if (n == )
b = (a[i - - n] - )*l + b;
else
b = a[i - - n] * l + b;
n++;
l = ;
}
b = b + i;//最小值为k时,k的排名
其中数组a[ ]里存着k
这段代码的讲解如下,为方便理解,令k=453,则有四种数字在k前边:
- (1)首位以1、2、3开头的数字,个数为(1+10+100)×(4-1)
- (2)首位为4的数,次位小于5的数,个数为(1+10)×(5-0)+1
- (3)首位为4,次位为5,第3位小于3的数,个数为1×(3-0)
- (4)首位或第二位与K相同,但总位数小于k。两个,分别为4、45
通过这种方法就求出来了最大值为k时的排名b。
- 如果m=b,那显然最小值n=k;
- 如果m<b,则不存在n,因为该组数的最小值肯定是>=k的。
- 如果m>b,则一定存在n。
下面讨论m>b的情况。
分析易知,若m>b,则n的位数肯定大于k的位数。K=453有3位,分析知4位数里排在453前边的数字有:
- 1000-1999,2000-2999,3000-3000,4000-4529
数字的数量 用代码表示为
*pow(,-+)-pow(,)
//pow(10,4-3+1)中的4代表4位数
3代表K的位数,pow(,)里的4代表4位数
若
- (m-3位数字中k的排名)<4位数里排在453前边的数字个数时
- 则所求数字n必然为四位数字,且n在1000-1999,2000-2999,3000-3000,4000-4529范围内
- n=(m-3位数字中k的排名-1)+1000。 若
- (m-3位数字中k的排名)>4位数里排在453前边的数字个数,则应继续判断(m-4位数字中k的排名)与5位数里排在453前边的数字个数大小,直到 (m-i位数字中453的排名)<与(i+1)位数里排在453前的数字量,此时即可得到所求的最小数字
- n=(m-i位数字中453的排名-1)+pow(10, i);
以上就是这道题的题解
洛谷【P2022 有趣的数】 题解的更多相关文章
- 洛谷 P2022 有趣的数 解题报告
P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...
- C++ 洛谷 P2657 [SCOI2009]windy数 题解
P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷P2657 [SCOI2009]windy数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2657 题目大意:找区间 \([A,B]\) 范围内 不含前导零 且 相邻两个数字之差至少为2 的正整数的个数. 题目分 ...
- P2022 有趣的数
P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...
- 洛谷P1783 海滩防御 分析+题解代码
洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...
- 洛谷P4047 [JSOI2010]部落划分题解
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...
- 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)
洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...
- 【洛谷P2022】有趣的数
有趣的数 题目链接 首先求出1~k中有多少个在k前面的数的个数,若>m,则无解 比如12345,从第一位开始, 1 0~1 共2个 1-0+1 12 10~12共3个 12-10+1 1 ...
- 洛谷10月月赛II题解
[咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...
随机推荐
- 在CentOS8 上安装Python3
从centos开始入手学习linux.感觉安装python很费劲,之前centos6因为python2和python3兼容的问题一直无法彻底解决,python3一旦安装影响到python2,cento ...
- 大延时情况tcp和udp测试
环境搭建 使能Ubuntu的IPv6转发功能 root@yanhc-Aspire-4738G:/home/yanhc# cat /proc/sys/net/ipv4/ip_forward root@y ...
- 非对称加密 秘钥登录 https
非对称加密简介: 对称加密算法在加密和解密时使用的是同一个秘钥:而非对称加密算法需要两个密钥来进行加密和解密,这两个秘钥是公开密钥(public key,简称公钥)私有密钥(private key,简 ...
- ssh_key认证
ssh认证流程步骤: 1.主机host_key认证 2.身份验证 3.身份验证通过 原理及更多知识点,请查看好友博客 http://www.cnblogs.com/f-ck-need-u/p/7129 ...
- [ERROR]pyodbc.ProgrammingError: ('42000', '[42000] [Microsoft][ODBC Driver 17 for SQL Server][SQL Server]SQL Server 阻止了对组件“xp_cmdshell”的 过程“sys.xp_cmdshell”的访问
环境: Windows 2012 R2 SQL Server 2014 通过MSSQL查询数据库服务器时间,报错如下: pyodbc.ProgrammingError: (', '[42000] [M ...
- vue-cli项目引入jquery和bootstrap
1.安装插件 npm install jquery --save npm install bootstrap --save npm install popper.js --save //提示框插件,b ...
- MySQL中的幻读,你真的理解吗?
昨天接到阿里的电话面试,对方问了一个在MySQL当中,什么是幻读.当时一脸懵逼,凭着印象和对方胡扯了几句.面试结束后,赶紧去查资料,才发现之前对幻读的理解完全错误.下面,我们就聊聊幻读. 要说幻读,就 ...
- PHPExcel使用
参考链接: 官方github:https://github.com/PHPOffice/PHPExcel 设置表格字体颜色等操作:http://www.cnblogs.com/grimm/p/9 ...
- Shiro知识初探(更新中)
Shiro 是当下常见的安全框架,主要用于用户验证和授权操作. RBAC 是当下权限系统的设计基础,同时有两种解释:一: Role-Based Access Control,基于角色的访问控制即,你要 ...
- 一个用python写的比特币均线指标
https://blog.csdn.net/gsl222/article/details/104554397 https://github.com/yyy999/auto_ma912 一个用pytho ...