题面

Description

很久很久以前,有一只神犇叫yzy;

很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;\(1<=N<=10^9\),A、B模\(10^9+7​\);

Output

请你输出一个整数\(A=\sum_{i=1}^N{\mu (i^2)}\);

请你输出一个整数\(B=\sum_{i=1}^N{\varphi (i^2)}\);

Sample Input

1

Sample Output

1

1\

题目分析

第一问:

根据定义,答案永远等于\(1\)。


第二问:

首先,显然有\(\varphi(i^2)=i\cdot\varphi(i)\)。

根据杜教筛的套路式:

\[g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac ni)
\]

通过(我也不知道怎么出来的)分析可得,令\(g(x)=x\):

\[\begin{split}
(f*g)(i)&=\sum_{d|i}\varphi(d)\cdot d\cdot \frac{i}{d}\\
&=\sum_{d|i}\varphi(d)\cdot i\\
&=i\sum_{d|i}\varphi(d)\\
&=i^2
\end{split}
\]

如此一来:

\[\sum_{i=1}^n(g*f)(i)=1^2+2^2+...+n^2=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6
\]

代回套路式可得:

\[S(n)=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6-\sum_{i=2}^ni\cdot S(\frac ni)
\]

现在,这个式子就可以用杜教筛解决了。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=3e6+5,M=N-5;
const int mod=1e9+7,inv6=166666668;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int prime[N],phi[N];
bool vis[N];
map<int,int>sphi;
int Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
int ret=1ll*x*(x+1)%mod*(2*x+1)%mod*inv6%mod;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret=(ret-1ll*(l+r)*(r-l+1)/2%mod*Sphi(x/l)%mod)%mod;
}
return sphi[x]=(ret+mod)%mod;
}
int main(){
phi[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,phi[i]=i-1;
for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<=M;i++)phi[i]=(1ll*phi[i]*i+phi[i-1])%mod;
int n=Getint();
cout<<1<<'\n'<<Sphi(n);
return 0;
}

【BZOJ4916】神犇与蒟蒻的更多相关文章

  1. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  2. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. vue webpack打包后.css文件里面的背景图片路径错误解决方法

    资源相对引用路径 问题描述 一般情况下,通过webpack+vuecli默认打包的css.js等资源,路径都是绝对的. 但当部署到带有文件夹的项目中,这种绝对路径就会出现问题,因为把配置的static ...

  2. 批量调用百度地图API获取地址经纬度坐标

    1 申请密匙 注册百度地图API:http://lbsyun.baidu.com/index.php?title=webapi 点击左侧 “获取密匙” ,经过填写个人信息.邮箱注册等,成功之后在开放平 ...

  3. HDU 3607 线段树+DP+离散化

    题意:从左往右跳箱子,每个箱子有金币数量,只能从矮处向高处跳,求最大可获得金币数,数据规模1<=n<=1e5. 显然是一个dp的问题,不难得出dp[ i ] = max(dp[j] )+v ...

  4. Interesting HDU - 5785 回文树

    题意: 找出所有[i,j]为回文串[j+1,k]也为回文串的i*k乘积之和. 题解: 设sum1[i] 为正着插入,到 i 的所有回文串的起始位置的前缀和,sum2[i] 表示反正插入的前缀和 ans ...

  5. Linux网络配置 RPM命令 samba服务 Linux目录结构

    第一种方法: (1)用root身份登录,运行setup命令进入到 text mode setup utiliy对网络进行配置,这里可以进行ip,子网掩码,默认网关,dns的设置.(2)这时网卡的配置没 ...

  6. arm-linux-ar 和 arm-linux-ranlib 的使用

    静态库是在编译时需要的库. 1. 建立一个静态库 [arm@localhost gcc]#arm­linux­ar ­r libhello.a h1.o h2.o 2. 为静态库建立索引 [arm@l ...

  7. MySQL中查询所有数据库占用磁盘空间大小

    查询所有数据库占用磁盘空间大小的SQL语句: 复制代码 代码如下:select TABLE_SCHEMA, concat(truncate(sum(data_length)/1024/1024,2), ...

  8. npm 安装vue 报错Failed at the chromedriver@2.46.0 install script 'node install.js'

    原因一般是下载源被封了,我们连接淘宝的下载源下载: npm install chromedriver --chromedriver_cdnurl=http://cdn.npm.taobao.org/d ...

  9. Postgraduate

    https://account.chsi.com.cn/passport/login?entrytype=yzgr&service=https%3A%2F%2Fyz.chsi.com.cn%2 ...

  10. java变量和数据类型

    变量 数据类型  变量名  =  数据值: 注意事项: 变量定义后可以不赋值,使用时再赋值.不赋值不能使用 变量使用时有作用域的限制. 变量不可以重复定义 数据类型转换 自动类型转换  范围大的数据类 ...