题面

Description

很久很久以前,有一只神犇叫yzy;

很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;\(1<=N<=10^9\),A、B模\(10^9+7​\);

Output

请你输出一个整数\(A=\sum_{i=1}^N{\mu (i^2)}\);

请你输出一个整数\(B=\sum_{i=1}^N{\varphi (i^2)}\);

Sample Input

1

Sample Output

1

1\

题目分析

第一问:

根据定义,答案永远等于\(1\)。


第二问:

首先,显然有\(\varphi(i^2)=i\cdot\varphi(i)\)。

根据杜教筛的套路式:

\[g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac ni)
\]

通过(我也不知道怎么出来的)分析可得,令\(g(x)=x\):

\[\begin{split}
(f*g)(i)&=\sum_{d|i}\varphi(d)\cdot d\cdot \frac{i}{d}\\
&=\sum_{d|i}\varphi(d)\cdot i\\
&=i\sum_{d|i}\varphi(d)\\
&=i^2
\end{split}
\]

如此一来:

\[\sum_{i=1}^n(g*f)(i)=1^2+2^2+...+n^2=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6
\]

代回套路式可得:

\[S(n)=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6-\sum_{i=2}^ni\cdot S(\frac ni)
\]

现在,这个式子就可以用杜教筛解决了。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=3e6+5,M=N-5;
const int mod=1e9+7,inv6=166666668;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int prime[N],phi[N];
bool vis[N];
map<int,int>sphi;
int Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
int ret=1ll*x*(x+1)%mod*(2*x+1)%mod*inv6%mod;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret=(ret-1ll*(l+r)*(r-l+1)/2%mod*Sphi(x/l)%mod)%mod;
}
return sphi[x]=(ret+mod)%mod;
}
int main(){
phi[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,phi[i]=i-1;
for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<=M;i++)phi[i]=(1ll*phi[i]*i+phi[i-1])%mod;
int n=Getint();
cout<<1<<'\n'<<Sphi(n);
return 0;
}

【BZOJ4916】神犇与蒟蒻的更多相关文章

  1. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  2. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. 27. USART, Universal synchronous asynchronous receiver transmitter

    27.1 USART introduction 通用同步异步接收发射机(USART)对需要NRZ异步串行数据格式行业标准的外部设备,提供了一个灵活的全双工数据交换的方法.USART使用分数波特率生成器 ...

  2. cv2.imwrite()指定图片存储路径

    cv2.imwrite("./data/photo_{}.jpg".format(i), photo)

  3. centos 7 设置IP地址

    先说下安装方式:我是采用的最小化安装 虚拟机软件:vmware 设置IP有两种情况,动态IP和静态IP,下面分别说明两种IP地址的设置方法 1.动态IP 条件:路由设置了动态分配IP地址(一般默认是动 ...

  4. Hadoop搭建,上传文件时出现错误,没有到主机的路由

    解决方案:(1)从namenode主机ping其它slaves节点的主机名(注意是slaves节点的主机名),如果ping不通,原因可能是namenode节点的/etc/hosts 未配置主机名与IP ...

  5. 《Java语言程序设计》编程练习6.18(检测密码)

    6.18 (检测密码)一些网站对于密码具有一些规则.编写一个方法,检测字符串是否是一个有效密码.     假定密码规则如下:     • 密码必须至少8位字符.     • 密码仅能包含字母和数字. ...

  6. 从虚拟地址,到物理地址(开PAE)

    学了好久好久,但是好久好久都没有用过,今天突然要用,都快忘了怎么玩了, 这里记录一下吧. 如何检测PAE r cr4 第5位如果是1,则开了PAE,否则没开 切入目标进程 查找一个自己关注的字符串s ...

  7. 002-Java数据类型

    Java数据类型 基本数据类型 和 引用数据类型 基本数据类型 整型:byte - 8bit / short - 2字节 / int - 4字节 / long - 8字节 浮点型:float doub ...

  8. 鼠标悬浮到div上,div进行360°旋转

    <!DOCTYPE html> <html> <head> <title>旋转</title> </head> <styl ...

  9. MySQL 05章_模糊查询和聚合函数

    在之前的查询都需要对查询的关机中进行“精确”.“完整”完整的输入才能查询相应的结果, 但在实际开发过程中,通常需要考虑用户可能不知道“精确”.“完整”的关键字, 那么就需要提供一种不太严格的查询方式, ...

  10. IOS配置cocos2d-x

    cd /Users/wyc/Desktop/cocos2d-x-3.16/tools/cocos2d-console/bin python cocos.py new HelloWorldDemo -p ...