Clausen Functions (and related series, functions, integrals)
Since the Clausen functions are intimately related to a number of other important special functions, such as Inverse Tangent Integrals, Polylogarithms, Polygamma Functions, Zeta Functions, and more besides - many of which are at the forefront of modern mathematical research.
Define the Clausen Functions \(\displaystyle \text{Cl}_m(\theta)\) and \(\displaystyle \text{Sl}_m(\theta)\) as follows:
\[\text{Cl}_m(\theta) = \begin{cases} \displaystyle\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^m} & \text{if }m\text{ is even} \\ \displaystyle\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^m} & \text{if }m\text{ is odd} \end{cases}~,~\text{Sl}_m(\theta) = \begin{cases} \displaystyle\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^m} & \text{if }m\text{ is even} \\ \displaystyle\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^m} & \text{if }m\text{ is odd} \end{cases}\]
As one would therefore expect, basic trigonometry can be used to develop all sorts of Clausen function properties. For example, consider the difference
\[\begin{align*}
&\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}-\sum_{k=1}^{\infty}\frac{\sin k(\pi-\theta)}{k^{2m}}\\
&=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}-\sum_{k=1}^{\infty}\frac{(\sin\pi k\cos k\theta-\cos\pi k\sin k\theta)}{k^{2m}}\\
&=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}+\sum_{k=1}^{\infty}\frac{(\cos\pi k\sin k\theta)}{k^{2m}}=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}+\sum_{k=1}^{\infty}(-1)^k\frac{\sin k\theta}{k^{2m}}\\
&=2\,\left(\frac{\sin 2\theta}{2^{2m}}+\frac{\sin 4\theta}{4^{2m}}+\frac{\sin 6\theta}{6^{2m}}+\cdots\,\right)\\
&=\displaystyle \frac{2}{2^{2m}}\,\left(\sin 2\theta+\frac{\sin 4\theta}{2^{2m}}+\frac{\sin 6\theta}{3^{2m}}+\cdots\,\right)=\frac{1}{2^{2m-1}}\text{Cl}_{2m}(2\theta)
\end{align*}\]
We now have the duplication formula for the CL-type Clausen function of even order:
\(\Large\mathbf{\color{Purple}{Result ~1:}}\)
\[\text{Cl}_{2m}(2\theta)=2^{2m-1}\Big[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\Big]\]
Next, let's take the above duplication formula, replace \(\theta\) with the variable \(x\), and integrate both sides:
\[\int_0^{\varphi}\text{Cl}_{2m}(2x)\,\mathrm{d}x=2^{2m-1}\left[\int_0^{\varphi}\text{Cl}_{2m}(x)\,\mathrm{d}x-\int_0^{\varphi}\text{Cl}_{2m}(\pi-x)\,\mathrm{d}x\right]\]
The L.H.S. is equal to
\[\begin{align*}
&\sum_{k=1}^{\infty}\frac{1}{k^{2m}}\,\int_0^{\varphi}\sin 2kx\,\mathrm{d}x=-\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}\Big[\cos 2kx\Big]_0^{\varphi}\\
&=-\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{\cos 2k\varphi}{k^{2m+1}}+\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}=\frac{1}{2}\,\Big[\zeta(2m+1)-\text{Cl}_{2m+1}(2\varphi)\Big]
\end{align*}\]
Whereas the difference of the two integrals on the R.H.S. is
\[\begin{align*}
&2^{2m-1}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m}}\int_0^{\varphi}\left[\sin kx-\sin k(\pi-x)\right]\,\mathrm{d}x\\
=&2^{2m-1}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}\Big[-\cos kx+\cos k(\pi-x)\Big]_0^{\varphi}\\
=&2^{2m-1}\,\sum_{k=1}^{\infty}\frac{[\cos k(\pi-\varphi)-\cos k\varphi]}{k^{2m+1}}=2^{2m-1}[\text{Cl}_{2m+1}(\pi-\varphi)-\text{Cl}_{2m+1}(\varphi)]
\end{align*}\]
We now have the duplication formula for a CL-type Clausen function of odd order:
\(\Large\mathbf{\color{Purple}{Result ~2:}}\)
\[\text{Cl}_{2m+1}(2\theta)=\zeta(2m+1)+2^{2m}\Big[\text{Cl}_{2m+1}(\theta)-\text{Cl}_{2m+1}(\pi-\theta)\Big]\]
Let's return to the first of the two duplication formulae, and derive a few particular values and correlations:
\[\text{Cl}_{2m}(2\theta)=2^{2m-1}\Big[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\Big]\]
Let \(\theta =0\), to obtain the obvious results (\(n=\) integer):
\[\text{Cl}_{2m}(0) = 0~,~\text{Cl}_{2m}(\pi n) = 0\]
Let \(\theta =\pi/3\), to obtain
\[\text{Cl}_{2m}\left ( \frac{\pi }{3} \right )=\frac{(1+2^{2m-1})}{2^{2m-1}}\text{Cl}_{2m}\left ( \frac{2\pi }{3} \right )\]
Similarly, let \(\theta =\pi/4\), to obtain
\[\text{Cl}_{2m}\left ( \frac{\pi }{2} \right )=2^{2m-1}\text{Cl}_{2m}\left ( \frac{\pi }{4} \right )-2^{2m-1}\text{Cl}_{2m}\left ( \frac{3\pi }{4} \right )\]
The leftmost Clausen function is expressible in terms of the Dirichlet Beta function:
\[\beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}\]
Since
\[\text{Cl}_{2m}\left ( \frac{\pi }{2} \right )=\sum_{k=1}^{\infty}\frac{\sin (\pi k/2)}{k^{2m}}=1-\frac{1}{3^{2m}}+\frac{1}{5^{2m}}-\frac{1}{7^{2m}}+\,\cdots\, =\beta(2m)\]
So, in summation, thus far we have the following useful values/relations:
\(\Large\mathbf{\color{Purple}{Result ~3:}}\)
\[\text{Cl}_{2m}(0) = 0~,~\text{Cl}_{2m}(\pi n) = 0~,~\text{Cl}_{2m}\left ( \frac{\pi }{2} \right ) = \beta(2m)\]
\[\text{Cl}_{2m}\left ( \frac{\pi }{3} \right )=\frac{(1+2^{2m-1})}{2^{2m-1}}\text{Cl}_{2m}\left ( \frac{2\pi }{3} \right )~,~\text{Cl}_{2m}\left ( \frac{\pi }{4} \right )=\frac{\beta(2m)}{2^{2m-1}}+\text{Cl}_{2m}\left ( \frac{3\pi }{4} \right )\]
Continuing on with the first of the two duplication formulae, note that we can apply it to itself as follows:
\[\begin{align*}
&\text{Cl}_{2m}(2\theta)=2^{2m-1}\left[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\right]\\
\Rightarrow &\text{Cl}_{2m}(4\theta)=2^{2m-1}\left[\text{Cl}_{2m}(2\theta)-\text{Cl}_{2m}(\pi-2\theta)\right]\\
=&2^{2m-1}\left[2^{2m-1}\left(\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\right)\right]-2^{2m-1}\text{Cl}_{2m}(2(\pi/2-\theta))\\
=&4^{2m-1}\left[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\right]-4^{2m-1}\left[\text{Cl}_{2m}(\pi/2-\theta)-\text{Cl}_{2m}(\pi/2+\theta)\right]
\end{align*}\]
\(\Large\mathbf{\color{Purple}{Result ~4:}}\)
\[\text{Cl}_{2m}(4\theta)=4^{2m-1}\Bigg[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta) -\text{Cl}_{2m}\left(\frac{\pi}{2}-\theta\right)+\text{Cl}_{2m}\left(\frac{\pi}{2}+\theta\right)\Bigg]\]
By applying the exact same process to the second of the two duplication formulae, then for CL-type Clausen function of odd index we have:
\(\Large\mathbf{\color{Purple}{Result ~5:}}\)
\[\begin{align*}
&\text{Cl}_{2m+1}(4\theta)\\
&=\zeta(2m+1)+4^{2m}\Bigg[\text{Cl}_{2m+1}(\theta)-\text{Cl}_{2m+1}(\pi-\theta) -\text{Cl}_{2m+1}\left(\frac{\pi}{2}-\theta\right)+\text{Cl}_{2m+1}\left(\frac{\pi}{2}+\theta\right)\Bigg]
\end{align*}\]
In \(\mathbf{\color{Purple}{Result~4}}\), set \(\displaystyle \theta=\pi/8\,\) to obtain:
\[\text{Cl}_{2m}\left(\frac{\pi}{2}\right)=4^{2m-1}\left[\text{Cl}_{2m}\left(\frac{\pi}{8}\right)-\text{Cl}_{2m}\left(\frac{7\pi}{8}\right) -\text{Cl}_{2m}\left(\frac{3\pi}{8}\right)+\text{Cl}_{2m}\left(\frac{5\pi}{8}\right)\right]\]
We've already seen that the leftmost Clausen function is expressible in terms of the Dirichlet Beta function, so we quickly conclude that:
\(\Large\mathbf{\color{Purple}{Result ~6:}}\)
\[\text{Cl}_{2m}\left(\frac{\pi}{8}\right) -\text{Cl}_{2m}\left(\frac{3\pi}{8}\right) +\text{Cl}_{2m}\left(\frac{5\pi}{8}\right) -\text{Cl}_{2m}\left(\frac{7\pi}{8}\right)=\frac{\beta(2m)}{4^{2m-1}}\]
And in particular:
\[\text{Cl}_{2}\left(\frac{\pi}{8}\right) -\text{Cl}_{2}\left(\frac{3\pi}{8}\right) +\text{Cl}_{2}\left(\frac{5\pi}{8}\right) -\text{Cl}_{2}\left(\frac{7\pi}{8}\right)=\frac{\beta(2)}{4}=\frac{\mathbf{G}}{4}\]
To express a CL-type Clausen function of rational argument and even order as a sum of polygamma functions, proceed as follows:
\[ \text{Cl}_{2m}\left(\frac{p\pi}{q}\right)=\sum_{k=1}^{\infty}\frac{\sin(p\pi/q)}{k^{2m}}\]
Split this into \(q\) parts
\[\begin{align*}
&\sum_{k=0}^{\infty}\frac{\sin\left[(kq+1)\dfrac{p\pi}{q}\right]}{(kq+1)^{2m}}+ \sum_{k=0}^{\infty}\frac{\sin\left[(kq+2)\dfrac{p\pi}{q}\right]}{(kq+2)^{2m}}+ \sum_{k=0}^{\infty}\frac{\sin\left[(kq+3)\dfrac{p\pi}{q}\right]}{(kq+3)^{2m}}+ \,\cdots\,+\\
&\sum_{k=0}^{\infty}\frac{\sin\left[(kq+(q-1))\dfrac{p\pi}{q}\right]}{(kq+(q-1))^{2m}}+ \sum_{k=0}^{\infty}\frac{\sin\left[(kq+q)\dfrac{p\pi}{q}\right]}{(kq+q)^{2m}}
\end{align*}\]
Convert into a finite sum:
\[\begin{align*}
&\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\sin\left(kp\pi+\dfrac{jp\pi}{q}\right)}{(kq+j)^{2m}}=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\sin\left(kp\pi+\dfrac{jp\pi}{q}\right)}{(k+j/q)^{2m}}=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\sin\left(kp\pi+\dfrac{jp\pi}{q}\right)}{(k+j/q)^{2m}}\\
&=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\cos(kp\pi)\sin\left(\dfrac{jp\pi}{q}\right)}{(k+j/q)^{2m}}=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\sum_{k=0}^{\infty}\frac{(-1)^{kp}}{(k+j/q)^{2m}}
\end{align*}\]
We now have two distinct cases to consider, since
\[(-1)^{kp} = \begin{cases} 1 & \text{if }p\text{ is even} \\ (-1)^k & \text{if }p\text{ is odd} \end{cases}\]
\(\mathbf{\color{Teal}{Case ~1. ~when ~\boldsymbol{p} ~is ~even:}}\)
This is, naturally, the simpler of the two, since the result above reduces to:
\[\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\sum_{k=0}^{\infty}\frac{1}{(k+j/q)^{2m}}\]
We then apply the series definition for the polygamma function
\[\psi_n(z)= (-1)^{n+1}\,n!\,\sum_{k=0}^{\infty}\frac{1}{(z+k)^{n+1}}\]
to obtain
\[\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\frac{\psi_{2m-1}\left ( \dfrac{j}{q}\right )}{(2m-1)!}\]
This, in turn, can be expressed in the infinitely more elegant form:
\(\Large\mathbf{\color{Purple}{Result ~7A:}}\)
\[(2m-1)!\,q^{2m}\,\text{Cl}_{2m}\left(\frac{p\pi}{q}\right)=\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\psi_{2m-1}\left(\frac{j}{q}\right)\]
\(\mathbf{\color{Teal}{Case ~2. ~when ~\boldsymbol{p} ~is ~odd:}}\)
When \(p\) is odd, we are faced with an alternating series, which must be split in two:
\[\begin{align*}
&\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(k+j/q)^{2m}}\\
=&\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \sum_{k=0}^{\infty}\frac{1}{(2k+j/q)^{2m}}- \sum_{k=0}^{\infty}\frac{1}{(2k+1+j/q)^{2m}} \right]\\
=&\frac{1}{(2q)^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \sum_{k=0}^{\infty}\frac{1}{[k+(j/2q)]^{2m}}- \sum_{k=0}^{\infty}\frac{1}{[k+((j+q)/2q)]^{2m}} \right]\\
=&\frac{1}{(2q)^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \frac{\psi_{2m-1}\left(\dfrac{j}{2q}\right)-\psi_{2m-1}\left(\dfrac{j+q}{2q}\right) }{(2m-1)!} \right]
\end{align*}\]
From which we obtain the final result:
\(\Large\mathbf{\color{Purple}{Result ~7B:}}\)
\[\displaystyle (2m-1)!\,(2q)^{2m}\,\text{Cl}_{2m}\left(\frac{p\pi}{q}\right)=\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \psi_{2m-1}\left(\frac{j}{2q}\right)-\psi_{2m-1}\left(\frac{j+q}{2q}\right) \right]\]
Here's an extremely elementary application of trigonometry to express a couple of trig series in terms of Clausen functions. Start of with a CL-type Clausen function of odd order and double argument:
\[\text{Cl}_{2m+1}(2\theta)=\sum_{k=1}^{\infty}\frac{\cos 2k\theta}{k^{2m+1}}\]
Next, split the sum using the double angle formula for the cosine:
\[\text{Cl}_{2m+1}(2\theta)=\sum_{k=1}^{\infty}\frac{(\cos^2 k\theta-\sin^2 k\theta)}{k^{2m+1}}= \sum_{k=1}^{\infty}\frac{\cos^2 k\theta}{k^{2m+1}}- \sum_{k=1}^{\infty}\frac{\sin^2 k\theta}{k^{2m+1}}\]
Again, using nothing but the most basic level of trigonometry, ie \(\displaystyle \sin^2 x+\cos^2 x=1\,\), we see that the sum of the last two series must be
\[\sum_{k=1}^{\infty}\frac{\cos^2 k\theta}{k^{2m+1}}+ \sum_{k=1}^{\infty}\frac{\sin^2 k\theta}{k^{2m+1}}=\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}=\zeta(2m+1)\]
Taking the sum/difference of these two results gives:
\(\Large\mathbf{\color{Purple}{Result ~8:}}\)
\[\sum_{k=1}^{\infty}\frac{\sin^2 k\theta}{k^{2m+1}}=\frac{1}{2}\Big[\zeta(2m+1)-\text{Cl}_{2m+1}(2\theta)\Big]\]
\[\sum_{k=1}^{\infty}\frac{\cos^2 k\theta}{k^{2m+1}}=\frac{1}{2}\Big[\zeta(2m+1)+\text{Cl}_{2m+1}(2\theta)\Big]\]
As mentioned right at the start, there are deep connections between the Clausen functions and - amongst others - polylogarithms. Here's a simple example.
For \(\displaystyle |z|\le 1\), the Polylogarithm of order \(m\) has the series expansion:
\[\text{Li}_m(z)=\sum_{k=1}^{\infty}\frac{z^k}{k^m}\]
Setting \(\displaystyle z=e^{i\theta}\,\) in the series above gives:
\[\begin{align*}
\text{Li}_m(e^{i\theta})&=\sum_{k=1}^{\infty}\frac{(e^{i\theta})^k}{k^m}=\sum_{k=1}^{\infty}\frac{(\cos \theta+i\sin \theta)^k}{k^m}\\
&=\sum_{k=1}^{\infty}\frac{(\cos k\theta+i\sin k\theta)}{k^m}=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^m}+i\,\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^m}
\end{align*}\]
So, for a polylogarithm of even order, we have:
\[\text{Li}_{2m}(e^{i\theta})=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^{2m}}+i\,\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}= \text{Sl}_{2m}(\theta)+i\,\text{Cl}_{2m}(\theta)\]
And similarly, for a polylogarithm of odd order:
\[\text{Li}_{2m+1}(e^{i\theta})=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^{2m+1}}+i\,\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m+1}}= \text{Cl}_{2m+1}(\theta)+i\,\text{Sl}_{2m+1}(\theta)\]
\(\Large\mathbf{\color{Purple}{Result ~9:}}\)
\[\begin{align*}
&\text{Li}_{2m}(e^{i\theta})= \text{Sl}_{2m}(\theta)+i\,\text{Cl}_{2m}(\theta)~,~\text{Li}_{2m+1}(e^{i\theta})= \text{Cl}_{2m+1}(\theta)+i\,\text{Sl}_{2m+1}(\theta)\\
&\text{Li}_{2m}(e^{-i\theta})= \text{Sl}_{2m}(\theta)-i\,\text{Cl}_{2m}(\theta)~,~ \text{Li}_{2m+1}(e^{-i\theta})= \text{Cl}_{2m+1}(\theta)-i\,\text{Sl}_{2m+1}(\theta)
\end{align*}\]
As later posts in this thread will demonstrate, the (definite integral) moments of Clausen functions have a number of important applications, so it would, therefore, be quite useful to find a closed form for these moments:
\[\mathbf{Cl}_{(m, n)}(\theta)=\int_0^{\theta}x^n\,\text{Cl}_{m}(x)\,\mathrm{d}x\]
In order to find these, we start off with the integral definition of \(\displaystyle \text{Cl}_2(\theta)\):
\[\text{Cl}_2(\theta)=-\int_0^{\theta}\ln\Big|2\sin\frac{x}{2}\Big|\,\mathrm{d}x\]
We could just as easily use the series definition, but it important to observe that, within the range \(\displaystyle 0 <\theta\le 2\pi\,\), the absolute value of the logsine term can be omitted. Hence while within this range, we can write
\[\text{Cl}_2(\theta)=-\int_0^{\theta}\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x~,~ \text{Cl}_1(\theta)=-\ln\left(2\sin\frac{\theta}{2}\right)\]
with no loss of generality. Note that the omission of \(\theta =0\) was to avoid the divergence of \(\displaystyle \text{Cl}_1(\theta)\,\) at this point (although, in the integrals presented below, this singularity is of no consequence).
The generalized moments of Clausen functions will be dealt with shortly, but for the moment, let's consider the special - and perhaps most important - case of the moments of \(\displaystyle \text{Cl}_1(\theta)\,\).
\[\mathbf{Cl}_{(1, n)}(\theta)=\int_0^{\theta}x^n\,\text{Cl}_{1}(x)\,\mathrm{d}x= -\int_0^{\theta}x^n\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x\]
Applying the series definition for \(\displaystyle \text{Cl}_1(\theta)\) this can be written as
\[\mathbf{Cl}_{(1, n)}(\theta)=-\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^n\cos kx\,\mathrm{d}x\]
Although tedious to derive, the closed form of that last trigonometric integral is easily deduced. Define
\[\mathcal{I}_{(p)}=\int_0^{\theta}x^p\cos kx\,\mathrm{d}x\]
Then we note that, for \(p > 2\):
\[\mathcal{I}_{(p)}=\frac{x^p}{k}\sin kx\,\Biggr|_0^{\theta}+\frac{px^{p-1}}{k^2}\cos kx\,\Biggr|_0^{\theta}-\frac{p(p-1)}{k^2}\mathcal{I}_{(p-2)}\]
A similarly, for \(p > 4\):
\[\begin{align*}
\mathcal{I}_{(p)}&=\frac{x^p}{k}\sin kx\,\Biggr|_0^{\theta}+\frac{px^{p-1}}{k^2}\cos kx\,\Biggr|_0^{\theta}- \frac{p(p-1)x^{p-2}}{k^3}\sin kx\,\Biggr|_0^{\theta}\\
&~~~-\frac{p(p-1)(p-2)x^{p-3}}{k^4}\cos kx\,\Biggr|_0^{\theta}+\frac{p(p-1)(p-2)(p-3)}{k^4}\mathcal{I}_{(p-4)}
\end{align*}\]
Using the iteration process above, and creating two sums - one for sine terms and the other for cosine terms - we get the desired result:
\[\mathcal{I}_{(p)}=p!\,\left[\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{x^{p-2j}\sin kx}{k^{2j+1}(p-2j)!}\Biggr|_0^{\theta}+ \sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{x^{p-2j-1}\cos kx}{k^{2j+2}(p-2j-1)!)}\Biggr|_0^{\theta} \right]\]
Inserting this into our moment integral gives:
\[\begin{align*}
&\mathbf{Cl}_{(1, p)}(\theta)=\int_0^{\theta}x^p\,\text{Cl}_{1}(x)\,\mathrm{d}x= -\int_0^{\theta}x^p\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x=-\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^p\cos kx\,\mathrm{d}x\\
&=-p!\,\sum_{k=1}^{\infty}\frac{1}{k}\,\left[\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{x^{p-2j}\sin kx}{k^{2j+1}(p-2j)!}\Biggr|_0^{\theta}+ \sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{x^{p-2j-1}\cos kx}{k^{2j+2}(p-2j-1)!)}\Biggr|_0^{\theta} \right]
\end{align*}\]
For the lower bound - \(x=0\) - the terms in the (finite!) sine series vanish. The same is true for all the lower bound term in the (finite) cosine series, except for the final term - containing \(x_0\), which is present only when \(p=2m+1\) is odd, in which case this final cosine term is \(\displaystyle (-1)^{\lfloor (p-1)/2 \rfloor +1} / k^{p+1}\,\). To account for this term, we introduce the function
\[\frac{[1+(-1)^{p+1}]}{2} = \begin{cases} 0, & \text{if }p\text{ is even} \\ 1, & \text{if }p\text{ is odd} \end{cases}\]
Finally, expressing our sum in terms of Clausen functions, we arrive at:
\(\Large\mathbf{\color{Purple}{Result ~10:}}\)
\[\begin{align*}
&\int_0^{\theta}x^p\,\text{Cl}_{1}(x)\mathrm{d}x\\
&=-p!\,\left[ \sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{{\theta}^{\,p-2j}}{(p-2j)!}\text{Cl}_{2j+2}(\theta)+ \sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{{\theta}^{\,p-2j-1}}{(p-2j-1)!)}\text{Cl}_{2j+3}(\theta)\right]\\
&~~~+p! (-1)^{\lfloor (p-1)/2 \rfloor} \frac{[1+(-1)^{p+1}]}{2}\zeta(p+2)
\end{align*}\]
A number of simple - but nonetheless important - trigonometric integrals follow immediately from the previous evaluation. For example
\[\begin{align*}
&\int_0^{\theta}x^p\,\text{Cl}_{1}(x)\,\mathrm{d}x= -\int_0^{\theta}x^p\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x\\
&=-\frac{\theta^{\,p+1}}{p+1}\ln\left(2\sin\frac{\theta}{2}\right)+\frac{1}{2(p+1)}\,\int_0^{\theta}x^{p+1}\cot\frac{x}{2}\,\mathrm{d}x
\end{align*}\]
Which can be re-written in the more convenient form:
\(\Large\mathbf{\color{Purple}{Result ~11:}}\)
\[\begin{align*}
&\int_0^{\phi}x^{p+1}\cot x\,\mathrm{d}x\\
&=(p+1)! \frac{(-1)^{\lfloor (p-1)/2 \rfloor}[1+(-1)^{p+1}]}{2^{p+2}}\zeta(p+2)+\phi^{p+1}\ln(2\sin\phi)\\
&~~~-(p+1)!\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{{\phi}^{\,p-2j}}{2^{2j+1}(p-2j)!}\text{Cl}_{2j+2}(\phi)\\
&~~~-(p+1)!\,\sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{{\phi}^{\,p-2j-1}}{2^{2j+2}(p-2j-1)!}\text{Cl}_{2j+3}(\phi)
\end{align*}\]
\(\mathbf{\color{DarkOrange}{Logcosine ~moments - ~part ~1:}}\)
Following on from the logsine moments above, we find that the equivalent logcosine moments are slightly trickier - which was to be expected - although they are far richer, since the complex parts also yield useful information.
By analogy, we start off with:
\[\begin{align*}
&\int_0^{\theta}x^m\ln\left(2\cos\frac{x}{2}\right)\,\mathrm{d}x=\int_0^{\theta}x^m\ln\left(\frac{1+e^{-ix}}{e^{-ix/2}}\right)\,\mathrm{d}x\\
&=\int_0^{\theta}x^m\ln(1+e^{-ix})\,\mathrm{d}x+i\,\frac{\theta^{m+2}}{2(m+2)}
\end{align*}\]
We'll ignore that final complex function of \(\theta\) for now, and continue with the evaluation of the complex logarithmic integral part:
\[\begin{align*}
&\int_0^{\theta}x^m\ln(1+e^{-ix})\,\mathrm{d}x=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}\int_0^{\theta}x^m(\cos kx -i\,\sin kx)\,\mathrm{d}x\\
&=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}\int_0^{\theta}x^m\cos kx\,\mathrm{d}x-i\,\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}\int_0^{\theta}x^m\sin kx\,\mathrm{d}x\\
&=\int_0^{\theta}x^m\left[\text{Cl}_1(x)-\frac{1}{2}\text{Cl}_1(2x)\right]\,\mathrm{d}x-i\,\int_0^{\theta}x^m\left[\text{Sl}_1(x)-\frac{1}{2}\text{Sl}_1(2x)\right]\,\mathrm{d}x\\
&\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^m\left(\cos kx-\frac{\cos 2kx}{2}\right)\,\mathrm{d}x-i\,\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^m\left(\sin kx-\frac{\sin 2kx}{2}\right)\,\mathrm{d}x
\end{align*}\]
We already have the closed form for the two leftmost CL-type integrals, so it remains to find the remaining two SL-types. [The real logcosine moments are omitted below, since they are easily deduced from the previous result]. Let
\[\mathcal{I}_{(p)}=\int_0^{\theta}x^p\sin kx\,\mathrm{d}x=-\frac{1}{k}\cos kx\Biggr|_0^{\theta}+\frac{px^{p-1}}{k^2}\sin kx\Biggr|_0^{\theta}-\frac{p(p-1)}{k^2}\mathcal{I}_{(p-2)}=\,\cdots\]
As before, a similar iteration process leads to the general result:
\[\begin{align*}
&\int_0^{\theta}x^p\sin kx\,\mathrm{d}x= \\
&p!\,\left[\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{k^{2j+1}(p-2j)!}\cos kx \,\Biggr|_0^{\theta}+\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{k^{2j+2}(p-2j-1)!}\sin kx\,\Biggr|_0^{\theta}\right]
\end{align*}\]
So the imaginary part of \(\displaystyle \int_0^{\theta}x^p\ln\left(2\cos\frac{x}{2}\right)\,\mathrm{d}x\) yields
\[\begin{align*}
&p!\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{k^{2j+1}(p-2j)!}\cos kx \,\Biggr|_0^{\theta}\\
&+p!\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{k^{2j+2}(p-2j-1)!}\sin kx\,\Biggr|_0^{\theta}\\
&+\frac{p!}{2}\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{(2k)^{2j+1}(p-2j)!}\cos 2kx \,\Biggr|_0^{\theta}\\
&-\frac{p!}{2}\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{(2k)^{2j+2}(p-2j-1)!}\sin 2kx\,\Biggr|_0^{\theta}+\frac{\theta^{m+2}}{2(m+2)}=0
\end{align*}\]
\[\begin{align*}
&p!\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{(p-2j)!}\text{Sl}_{2j+2}(x)\,\Biggr|_0^{\theta}+p!\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{(p-2j-1)!}\text{Sl}_{2j+3}(x)\,\Biggr|_0^{\theta}\\
&-\frac{p!}{2}\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{2^{2j+1}(p-2j)!}\text{Sl}_{2j+2}(2x)\,\Biggr|_0^{\theta}\\
&-\frac{p!}{2}\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{2^{2j+2}(p-2j-1)!}\text{Sl}_{2j+3}(2x)\,\Biggr|_0^{\theta}+\frac{\theta^{m+2}}{2(m+2)}=0
\end{align*}\]
As promised before - on other threads, and indeed other forums - I'll start to find closed form expressions for various polygamma functions, at the rational arguments $1/2, 1/3, 2/3, 1/4 \(,\) 3/4, 1/6$, and \(5/6\). This might take a while, and be posted in stages.
To start with, let's consider the following particular Clausen function of (arbitrary) odd order:
\[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (\pi k/3)}{k^{2m+1}}\]
We want to split this into six sums, where the first sum contains the first of every six terms, the second contains the second of every six terms, and so on. We also change summation index so our new series start at \(k=0\), rather than \(k=1\) above.
\[\begin{align*}
&\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (\pi k/3)}{k^{2m+1}}=\\
&\sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+1)}{(6k+1)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+2)}{(6k+2)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+3)}{(6k+3)^{2m+1}}+\\
&\sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+4)}{(6k+4)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+5)}{(6k+5)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+6)}{(6k+6)^{2m+1}}
\end{align*}\]
Simplify the trig term in each series:
\[\begin{align*}
\cos \frac{\pi}{3}(6k+n)&=\cos\left(2\pi k+\frac{\pi n}{3}\right)\\
&=\cos 2\pi k\cos\frac{\pi n}{3}-\sin 2\pi k\sin\frac{\pi n}{3}\equiv \cos\frac{\pi n}{3}
\end{align*}\]
Our new sextet of series is thus
\[\begin{align*}
&\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\cos\left(\frac{\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}+ \cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}\\
&+\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}+ \cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}\\
&+\cos\left(\frac{5\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+ \cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}
\end{align*}\]
Multiply both sides by \(6^{2m+1}\), and then subtract the third and sixth series on the RHS from the Clausen term on the LHS (using \(\displaystyle \cos\pi = -1\,\) and \(\displaystyle \cos 2\pi=1\,\) ) to obtain:
\[\begin{align*}
&6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\sum_{k=0}^{\infty}\frac{1}{(k+1/2)^{2m+1}}-\sum_{k=0}^{\infty}\frac{1}{(k+1)^{2m+1}}\\
&=\cos\left(\frac{\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+1/6)^{2m+1}}+ \cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+1/3)^{2m+1}}\\
&~~~+\cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+2/3)^{2m+1}}+\cos\left(\frac{5\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+5/6)^{2m+1}}
\end{align*}\]
Express the cosine terms on the RHS in real/rational form to make the RHS
\[\begin{align*}
&\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+1/6)^{2m+1}}- \frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+1/3)^{2m+1}}\\
-&\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+2/3)^{2m+1}}+\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+5/6)^{2m+1}}
\end{align*}\]
Now use
\[\psi_{n\ge 1}(x)=(-1)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{(k+x)^{n+1}}\]
to re-write the RHS as:
\[\begin{align*}
&\frac{1}{2}\left(\frac{(-1)^{2m}}{(2m)!}\right)\Bigg\{ \psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) +\psi_{2m}\left( \frac{5}{6} \right) \Bigg\}\\
=&\frac{1}{2\,(2m)!}\, \Bigg\{ \psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) +\psi_{2m}\left( \frac{5}{6} \right) \Bigg\}
\end{align*}\]
Next, apply the same process to the two series on the LHS (with the Clausen term):
\[\begin{align*}
&6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\sum_{k=0}^{\infty}\frac{1}{(k+1/2)^{2m+1}}-\sum_{k=0}^{\infty}\frac{1}{(k+1)^{2m+1}}\\
=&6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\frac{1}{(2m)!}\Bigg\{\psi_{2m}\left(\frac{1}{2}\right)-\psi_{2m}(1)\Bigg\}
\end{align*}\]
Multiplying both sides by \(2(2m)!\) then gives the identity
\[\begin{align*}
&2\, (2m)! \,6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+2\psi_{2m}\left(\frac{1}{2}\right)-2\psi_{2m}(1)\\
=& \psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) +\psi_{2m}\left( \frac{5}{6} \right)
\end{align*}\]
Next, repeat all of the above, but this time in terms of the Clasuen function with argument \(2\pi /3\)
\[\begin{align*}
&\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (2\pi k/3)}{k^{2m+1}}\\
&=\cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}+ \cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+\\
&~~~\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}+ \cos\left(\frac{8\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}+\\
&~~~\cos\left(\frac{10\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+ \cos\left(4\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}\\
&=-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}} -\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+\sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}\\
&~~~- \frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}
\end{align*}\]
Continue exactly as before, and you get the second relation
\[\begin{align*}
&2\, (2m)! \,6^{2m+1}\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)-2\psi_{2m}\left(\frac{1}{2}\right)-2\psi_{2m}(1)\\
&=-\psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) -\psi_{2m}\left( \frac{5}{6} \right)
\end{align*}\]
Relative to the arguments \(1/3, 2/3, 1/6\), and \(5/6\), the arguments \(1\) and \(1/2\) are pretty straightforward, so I'll simply state them now and prove them later.
\[\psi_{2m}(1)=-(2m)!\zeta(2m+1)~,~\psi_{2m}\left(\frac{1}{2}\right)=-(2m)!\,(2^{2m+1}-1)\zeta(2m+1)\]
Now, if you add the final forms or relation \(1\) and relation \(2\) you get:
\[\begin{align*}
&2\, (2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]-4\psi_{2m}(1)\\
=&2\, (2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+4\,(2m)!\zeta(2m+1)\\
=&2\Bigg\{ \psi_{2m}\left( \frac{1}{3} \right) +\psi_{2m}\left( \frac{2}{3} \right)\Bigg\}
\end{align*}\]
Or
\[\begin{align*}
&(2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+2\,(2m)!\zeta(2m+1)\\
=&\psi_{2m}\left( \frac{1}{3} \right) +\psi_{2m}\left( \frac{2}{3} \right)
\end{align*}\]
On the other hand, the reflection formula for the polygamma function gives:
\[\begin{align*}
&\psi_{2m}(x)-\psi_{2m}(1-x)=\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\\
\Rightarrow &\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right)=\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\,\Biggr|_{x=1/3}
\end{align*}\]
So
\[\begin{align*}
&\psi_{2m}\left( \frac{1}{3} \right)\\
=&\displaystyle \frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\,(2m)!\zeta(2m+1)+\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\,\Biggr|_{x=1/3}
\end{align*}\]
and
\[\begin{align*}
&\psi_{2m}\left( \frac{2}{3} \right)\\
=&\frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\,(2m)!\zeta(2m+1)-\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\,\Biggr|_{x=1/3}
\end{align*}\]
Clausen Functions (and related series, functions, integrals)的更多相关文章
- Part 16 Important concepts related to functions in sql server
Important concepts related to functions in sql server
- Oracle Single-Row Functions(单行函数)——NULL-Related Functions
参考资料:http://docs.oracle.com/database/122/SQLRF/Functions.htm#SQLRF006 Single-row functions return a ...
- SQL Fundamentals || Single-Row Functions || 日期函数date functions
SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使 ...
- SQL Fundamentals || Single-Row Functions || 数字函数number functions
SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使用单 ...
- SQL Fundamentals || Single-Row Functions || 字符函数 character functions
SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使 ...
- What are the benefits to using anonymous functions instead of named functions for callbacks and parameters in JavaScript event code?
What are the benefits to using anonymous functions instead of named functions for callbacks and par ...
- Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic numbers
链接:http://pan.baidu.com/s/1eSNkz4Y
- Think Python - Chapter 03 - Functions
3.1 Function callsIn the context of programming, a function is a named sequence of statements that p ...
- MySQL 8.0.2: Introducing Window Functions
July 18, 2017MySQL, SQLDag Wanvik MySQL 8.0.2 introduces SQL window functions, or analytic functions ...
随机推荐
- eclipse的一些使用
1.恢复默认视图 window->perspective->open perspective ->open java 2.打开其他的一些视图,比如server(tomcat,目前使用 ...
- 【Python】random库
种子相同,随机数相同
- Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
Their data five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point. t ...
- Wooden Sticks(贪心)
Wooden Sticks. win the wooden spoon:成为末名. 题目地址:http://poj.org/problem?id=1065 There is a pile of n w ...
- JS高级---函数声明和函数表达式的区别
函数声明和函数表达式的区别 多用函数表达式 var ff=function(){}; //函数声明 // // if(true){ // function f1() { // console.log( ...
- 关于memset....我太难了
众所周知memset是个清空数组的好东西 然而...它慢的要死 直接让我从30ms炸到1045ms 于是快乐tle .... 是我的错 所以以后还是手动清空 (我真快乐)
- MVC5+EF6 入门完整教程4 :EF基本的CRUD
上篇文章主要讲了如何配置EF, 我们回顾下主要过程: 创建Data Model ---> 创建Database Context --->创建databaseInitializer---&g ...
- Yii2.0 高级版修改默认访问控制器
frontend->config->main-local.php $config = [ 'defaultRoute' => 'index/index',//修改默认访问控制器 'c ...
- PHP中spl_autoload_register()函数用法实例详解
本文实例分析了PHP中spl_autoload_register()函数用法.分享给大家供大家参考,具体如下: 在了解这个函数之前先来看另一个函数:__autoload. 一.__autoload 这 ...
- socket 异步I/O
# 客服端 # -*- coding: utf-8 -*- import socket import threading # from collections import deque # q = d ...