Since the Clausen functions are intimately related to a number of other important special functions, such as Inverse Tangent Integrals, Polylogarithms, Polygamma Functions, Zeta Functions, and more besides - many of which are at the forefront of modern mathematical research.
Define the Clausen Functions \(\displaystyle \text{Cl}_m(\theta)\) and \(\displaystyle \text{Sl}_m(\theta)\) as follows:
\[\text{Cl}_m(\theta) = \begin{cases} \displaystyle\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^m} & \text{if }m\text{ is even} \\ \displaystyle\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^m} & \text{if }m\text{ is odd} \end{cases}~,~\text{Sl}_m(\theta) = \begin{cases} \displaystyle\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^m} & \text{if }m\text{ is even} \\ \displaystyle\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^m} & \text{if }m\text{ is odd} \end{cases}\]
As one would therefore expect, basic trigonometry can be used to develop all sorts of Clausen function properties. For example, consider the difference
\[\begin{align*}
&\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}-\sum_{k=1}^{\infty}\frac{\sin k(\pi-\theta)}{k^{2m}}\\
&=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}-\sum_{k=1}^{\infty}\frac{(\sin\pi k\cos k\theta-\cos\pi k\sin k\theta)}{k^{2m}}\\
&=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}+\sum_{k=1}^{\infty}\frac{(\cos\pi k\sin k\theta)}{k^{2m}}=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}+\sum_{k=1}^{\infty}(-1)^k\frac{\sin k\theta}{k^{2m}}\\
&=2\,\left(\frac{\sin 2\theta}{2^{2m}}+\frac{\sin 4\theta}{4^{2m}}+\frac{\sin 6\theta}{6^{2m}}+\cdots\,\right)\\
&=\displaystyle \frac{2}{2^{2m}}\,\left(\sin 2\theta+\frac{\sin 4\theta}{2^{2m}}+\frac{\sin 6\theta}{3^{2m}}+\cdots\,\right)=\frac{1}{2^{2m-1}}\text{Cl}_{2m}(2\theta)
\end{align*}\]
We now have the duplication formula for the CL-type Clausen function of even order:
\(\Large\mathbf{\color{Purple}{Result ~1:}}\)
\[\text{Cl}_{2m}(2\theta)=2^{2m-1}\Big[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\Big]\]


Next, let's take the above duplication formula, replace \(\theta\) with the variable \(x\), and integrate both sides:
\[\int_0^{\varphi}\text{Cl}_{2m}(2x)\,\mathrm{d}x=2^{2m-1}\left[\int_0^{\varphi}\text{Cl}_{2m}(x)\,\mathrm{d}x-\int_0^{\varphi}\text{Cl}_{2m}(\pi-x)\,\mathrm{d}x\right]\]
The L.H.S. is equal to
\[\begin{align*}
&\sum_{k=1}^{\infty}\frac{1}{k^{2m}}\,\int_0^{\varphi}\sin 2kx\,\mathrm{d}x=-\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}\Big[\cos 2kx\Big]_0^{\varphi}\\
&=-\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{\cos 2k\varphi}{k^{2m+1}}+\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}=\frac{1}{2}\,\Big[\zeta(2m+1)-\text{Cl}_{2m+1}(2\varphi)\Big]
\end{align*}\]
Whereas the difference of the two integrals on the R.H.S. is
\[\begin{align*}
&2^{2m-1}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m}}\int_0^{\varphi}\left[\sin kx-\sin k(\pi-x)\right]\,\mathrm{d}x\\
=&2^{2m-1}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}\Big[-\cos kx+\cos k(\pi-x)\Big]_0^{\varphi}\\
=&2^{2m-1}\,\sum_{k=1}^{\infty}\frac{[\cos k(\pi-\varphi)-\cos k\varphi]}{k^{2m+1}}=2^{2m-1}[\text{Cl}_{2m+1}(\pi-\varphi)-\text{Cl}_{2m+1}(\varphi)]
\end{align*}\]
We now have the duplication formula for a CL-type Clausen function of odd order:
\(\Large\mathbf{\color{Purple}{Result ~2:}}\)
\[\text{Cl}_{2m+1}(2\theta)=\zeta(2m+1)+2^{2m}\Big[\text{Cl}_{2m+1}(\theta)-\text{Cl}_{2m+1}(\pi-\theta)\Big]\]


Let's return to the first of the two duplication formulae, and derive a few particular values and correlations:
\[\text{Cl}_{2m}(2\theta)=2^{2m-1}\Big[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\Big]\]
Let \(\theta =0\), to obtain the obvious results (\(n=\) integer):
\[\text{Cl}_{2m}(0) = 0~,~\text{Cl}_{2m}(\pi n) = 0\]
Let \(\theta =\pi/3\), to obtain
\[\text{Cl}_{2m}\left ( \frac{\pi }{3} \right )=\frac{(1+2^{2m-1})}{2^{2m-1}}\text{Cl}_{2m}\left ( \frac{2\pi }{3} \right )\]
Similarly, let \(\theta =\pi/4\), to obtain
\[\text{Cl}_{2m}\left ( \frac{\pi }{2} \right )=2^{2m-1}\text{Cl}_{2m}\left ( \frac{\pi }{4} \right )-2^{2m-1}\text{Cl}_{2m}\left ( \frac{3\pi }{4} \right )\]
The leftmost Clausen function is expressible in terms of the Dirichlet Beta function:
\[\beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}\]
Since
\[\text{Cl}_{2m}\left ( \frac{\pi }{2} \right )=\sum_{k=1}^{\infty}\frac{\sin (\pi k/2)}{k^{2m}}=1-\frac{1}{3^{2m}}+\frac{1}{5^{2m}}-\frac{1}{7^{2m}}+\,\cdots\, =\beta(2m)\]
So, in summation, thus far we have the following useful values/relations:
\(\Large\mathbf{\color{Purple}{Result ~3:}}\)
\[\text{Cl}_{2m}(0) = 0~,~\text{Cl}_{2m}(\pi n) = 0~,~\text{Cl}_{2m}\left ( \frac{\pi }{2} \right ) = \beta(2m)\]
\[\text{Cl}_{2m}\left ( \frac{\pi }{3} \right )=\frac{(1+2^{2m-1})}{2^{2m-1}}\text{Cl}_{2m}\left ( \frac{2\pi }{3} \right )~,~\text{Cl}_{2m}\left ( \frac{\pi }{4} \right )=\frac{\beta(2m)}{2^{2m-1}}+\text{Cl}_{2m}\left ( \frac{3\pi }{4} \right )\]


Continuing on with the first of the two duplication formulae, note that we can apply it to itself as follows:
\[\begin{align*}
&\text{Cl}_{2m}(2\theta)=2^{2m-1}\left[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\right]\\
\Rightarrow &\text{Cl}_{2m}(4\theta)=2^{2m-1}\left[\text{Cl}_{2m}(2\theta)-\text{Cl}_{2m}(\pi-2\theta)\right]\\
=&2^{2m-1}\left[2^{2m-1}\left(\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\right)\right]-2^{2m-1}\text{Cl}_{2m}(2(\pi/2-\theta))\\
=&4^{2m-1}\left[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta)\right]-4^{2m-1}\left[\text{Cl}_{2m}(\pi/2-\theta)-\text{Cl}_{2m}(\pi/2+\theta)\right]
\end{align*}\]
\(\Large\mathbf{\color{Purple}{Result ~4:}}\)
\[\text{Cl}_{2m}(4\theta)=4^{2m-1}\Bigg[\text{Cl}_{2m}(\theta)-\text{Cl}_{2m}(\pi-\theta) -\text{Cl}_{2m}\left(\frac{\pi}{2}-\theta\right)+\text{Cl}_{2m}\left(\frac{\pi}{2}+\theta\right)\Bigg]\]


By applying the exact same process to the second of the two duplication formulae, then for CL-type Clausen function of odd index we have:
\(\Large\mathbf{\color{Purple}{Result ~5:}}\)
\[\begin{align*}
&\text{Cl}_{2m+1}(4\theta)\\
&=\zeta(2m+1)+4^{2m}\Bigg[\text{Cl}_{2m+1}(\theta)-\text{Cl}_{2m+1}(\pi-\theta) -\text{Cl}_{2m+1}\left(\frac{\pi}{2}-\theta\right)+\text{Cl}_{2m+1}\left(\frac{\pi}{2}+\theta\right)\Bigg]
\end{align*}\]


In \(\mathbf{\color{Purple}{Result~4}}\), set \(\displaystyle \theta=\pi/8\,\) to obtain:
\[\text{Cl}_{2m}\left(\frac{\pi}{2}\right)=4^{2m-1}\left[\text{Cl}_{2m}\left(\frac{\pi}{8}\right)-\text{Cl}_{2m}\left(\frac{7\pi}{8}\right) -\text{Cl}_{2m}\left(\frac{3\pi}{8}\right)+\text{Cl}_{2m}\left(\frac{5\pi}{8}\right)\right]\]
We've already seen that the leftmost Clausen function is expressible in terms of the Dirichlet Beta function, so we quickly conclude that:
\(\Large\mathbf{\color{Purple}{Result ~6:}}\)
\[\text{Cl}_{2m}\left(\frac{\pi}{8}\right) -\text{Cl}_{2m}\left(\frac{3\pi}{8}\right) +\text{Cl}_{2m}\left(\frac{5\pi}{8}\right) -\text{Cl}_{2m}\left(\frac{7\pi}{8}\right)=\frac{\beta(2m)}{4^{2m-1}}\]
And in particular:
\[\text{Cl}_{2}\left(\frac{\pi}{8}\right) -\text{Cl}_{2}\left(\frac{3\pi}{8}\right) +\text{Cl}_{2}\left(\frac{5\pi}{8}\right) -\text{Cl}_{2}\left(\frac{7\pi}{8}\right)=\frac{\beta(2)}{4}=\frac{\mathbf{G}}{4}\]


To express a CL-type Clausen function of rational argument and even order as a sum of polygamma functions, proceed as follows:
\[ \text{Cl}_{2m}\left(\frac{p\pi}{q}\right)=\sum_{k=1}^{\infty}\frac{\sin(p\pi/q)}{k^{2m}}\]
Split this into \(q\) parts
\[\begin{align*}
&\sum_{k=0}^{\infty}\frac{\sin\left[(kq+1)\dfrac{p\pi}{q}\right]}{(kq+1)^{2m}}+ \sum_{k=0}^{\infty}\frac{\sin\left[(kq+2)\dfrac{p\pi}{q}\right]}{(kq+2)^{2m}}+ \sum_{k=0}^{\infty}\frac{\sin\left[(kq+3)\dfrac{p\pi}{q}\right]}{(kq+3)^{2m}}+ \,\cdots\,+\\
&\sum_{k=0}^{\infty}\frac{\sin\left[(kq+(q-1))\dfrac{p\pi}{q}\right]}{(kq+(q-1))^{2m}}+ \sum_{k=0}^{\infty}\frac{\sin\left[(kq+q)\dfrac{p\pi}{q}\right]}{(kq+q)^{2m}}
\end{align*}\]
Convert into a finite sum:
\[\begin{align*}
&\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\sin\left(kp\pi+\dfrac{jp\pi}{q}\right)}{(kq+j)^{2m}}=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\sin\left(kp\pi+\dfrac{jp\pi}{q}\right)}{(k+j/q)^{2m}}=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\sin\left(kp\pi+\dfrac{jp\pi}{q}\right)}{(k+j/q)^{2m}}\\
&=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\sum_{k=0}^{\infty}\frac{\cos(kp\pi)\sin\left(\dfrac{jp\pi}{q}\right)}{(k+j/q)^{2m}}=\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\sum_{k=0}^{\infty}\frac{(-1)^{kp}}{(k+j/q)^{2m}}
\end{align*}\]
We now have two distinct cases to consider, since
\[(-1)^{kp} = \begin{cases} 1 & \text{if }p\text{ is even} \\ (-1)^k & \text{if }p\text{ is odd} \end{cases}\]
\(\mathbf{\color{Teal}{Case ~1. ~when ~\boldsymbol{p} ~is ~even:}}\)
This is, naturally, the simpler of the two, since the result above reduces to:
\[\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\sum_{k=0}^{\infty}\frac{1}{(k+j/q)^{2m}}\]
We then apply the series definition for the polygamma function
\[\psi_n(z)= (-1)^{n+1}\,n!\,\sum_{k=0}^{\infty}\frac{1}{(z+k)^{n+1}}\]
to obtain
\[\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\frac{\psi_{2m-1}\left ( \dfrac{j}{q}\right )}{(2m-1)!}\]
This, in turn, can be expressed in the infinitely more elegant form:
\(\Large\mathbf{\color{Purple}{Result ~7A:}}\)
\[(2m-1)!\,q^{2m}\,\text{Cl}_{2m}\left(\frac{p\pi}{q}\right)=\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\psi_{2m-1}\left(\frac{j}{q}\right)\]


\(\mathbf{\color{Teal}{Case ~2. ~when ~\boldsymbol{p} ~is ~odd:}}\)
When \(p\) is odd, we are faced with an alternating series, which must be split in two:
\[\begin{align*}
&\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(k+j/q)^{2m}}\\
=&\frac{1}{q^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \sum_{k=0}^{\infty}\frac{1}{(2k+j/q)^{2m}}- \sum_{k=0}^{\infty}\frac{1}{(2k+1+j/q)^{2m}} \right]\\
=&\frac{1}{(2q)^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \sum_{k=0}^{\infty}\frac{1}{[k+(j/2q)]^{2m}}- \sum_{k=0}^{\infty}\frac{1}{[k+((j+q)/2q)]^{2m}} \right]\\
=&\frac{1}{(2q)^{2m}}\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \frac{\psi_{2m-1}\left(\dfrac{j}{2q}\right)-\psi_{2m-1}\left(\dfrac{j+q}{2q}\right) }{(2m-1)!} \right]
\end{align*}\]
From which we obtain the final result:
\(\Large\mathbf{\color{Purple}{Result ~7B:}}\)
\[\displaystyle (2m-1)!\,(2q)^{2m}\,\text{Cl}_{2m}\left(\frac{p\pi}{q}\right)=\sum_{j=1}^{j=q}\,\sin\left(\frac{jp\pi}{q}\right)\,\left[ \psi_{2m-1}\left(\frac{j}{2q}\right)-\psi_{2m-1}\left(\frac{j+q}{2q}\right) \right]\]


Here's an extremely elementary application of trigonometry to express a couple of trig series in terms of Clausen functions. Start of with a CL-type Clausen function of odd order and double argument:
\[\text{Cl}_{2m+1}(2\theta)=\sum_{k=1}^{\infty}\frac{\cos 2k\theta}{k^{2m+1}}\]
Next, split the sum using the double angle formula for the cosine:
\[\text{Cl}_{2m+1}(2\theta)=\sum_{k=1}^{\infty}\frac{(\cos^2 k\theta-\sin^2 k\theta)}{k^{2m+1}}= \sum_{k=1}^{\infty}\frac{\cos^2 k\theta}{k^{2m+1}}- \sum_{k=1}^{\infty}\frac{\sin^2 k\theta}{k^{2m+1}}\]
Again, using nothing but the most basic level of trigonometry, ie \(\displaystyle \sin^2 x+\cos^2 x=1\,\), we see that the sum of the last two series must be
\[\sum_{k=1}^{\infty}\frac{\cos^2 k\theta}{k^{2m+1}}+ \sum_{k=1}^{\infty}\frac{\sin^2 k\theta}{k^{2m+1}}=\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}=\zeta(2m+1)\]
Taking the sum/difference of these two results gives:
\(\Large\mathbf{\color{Purple}{Result ~8:}}\)
\[\sum_{k=1}^{\infty}\frac{\sin^2 k\theta}{k^{2m+1}}=\frac{1}{2}\Big[\zeta(2m+1)-\text{Cl}_{2m+1}(2\theta)\Big]\]
\[\sum_{k=1}^{\infty}\frac{\cos^2 k\theta}{k^{2m+1}}=\frac{1}{2}\Big[\zeta(2m+1)+\text{Cl}_{2m+1}(2\theta)\Big]\]


As mentioned right at the start, there are deep connections between the Clausen functions and - amongst others - polylogarithms. Here's a simple example.
For \(\displaystyle |z|\le 1\), the Polylogarithm of order \(m\) has the series expansion:
\[\text{Li}_m(z)=\sum_{k=1}^{\infty}\frac{z^k}{k^m}\]
Setting \(\displaystyle z=e^{i\theta}\,\) in the series above gives:
\[\begin{align*}
\text{Li}_m(e^{i\theta})&=\sum_{k=1}^{\infty}\frac{(e^{i\theta})^k}{k^m}=\sum_{k=1}^{\infty}\frac{(\cos \theta+i\sin \theta)^k}{k^m}\\
&=\sum_{k=1}^{\infty}\frac{(\cos k\theta+i\sin k\theta)}{k^m}=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^m}+i\,\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^m}
\end{align*}\]
So, for a polylogarithm of even order, we have:
\[\text{Li}_{2m}(e^{i\theta})=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^{2m}}+i\,\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}}= \text{Sl}_{2m}(\theta)+i\,\text{Cl}_{2m}(\theta)\]
And similarly, for a polylogarithm of odd order:
\[\text{Li}_{2m+1}(e^{i\theta})=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^{2m+1}}+i\,\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m+1}}= \text{Cl}_{2m+1}(\theta)+i\,\text{Sl}_{2m+1}(\theta)\]
\(\Large\mathbf{\color{Purple}{Result ~9:}}\)
\[\begin{align*}
&\text{Li}_{2m}(e^{i\theta})= \text{Sl}_{2m}(\theta)+i\,\text{Cl}_{2m}(\theta)~,~\text{Li}_{2m+1}(e^{i\theta})= \text{Cl}_{2m+1}(\theta)+i\,\text{Sl}_{2m+1}(\theta)\\
&\text{Li}_{2m}(e^{-i\theta})= \text{Sl}_{2m}(\theta)-i\,\text{Cl}_{2m}(\theta)~,~ \text{Li}_{2m+1}(e^{-i\theta})= \text{Cl}_{2m+1}(\theta)-i\,\text{Sl}_{2m+1}(\theta)
\end{align*}\]


As later posts in this thread will demonstrate, the (definite integral) moments of Clausen functions have a number of important applications, so it would, therefore, be quite useful to find a closed form for these moments:
\[\mathbf{Cl}_{(m, n)}(\theta)=\int_0^{\theta}x^n\,\text{Cl}_{m}(x)\,\mathrm{d}x\]
In order to find these, we start off with the integral definition of \(\displaystyle \text{Cl}_2(\theta)\):
\[\text{Cl}_2(\theta)=-\int_0^{\theta}\ln\Big|2\sin\frac{x}{2}\Big|\,\mathrm{d}x\]
We could just as easily use the series definition, but it important to observe that, within the range \(\displaystyle 0 <\theta\le 2\pi\,\), the absolute value of the logsine term can be omitted. Hence while within this range, we can write
\[\text{Cl}_2(\theta)=-\int_0^{\theta}\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x~,~ \text{Cl}_1(\theta)=-\ln\left(2\sin\frac{\theta}{2}\right)\]
with no loss of generality. Note that the omission of \(\theta =0\) was to avoid the divergence of \(\displaystyle \text{Cl}_1(\theta)\,\) at this point (although, in the integrals presented below, this singularity is of no consequence).
The generalized moments of Clausen functions will be dealt with shortly, but for the moment, let's consider the special - and perhaps most important - case of the moments of \(\displaystyle \text{Cl}_1(\theta)\,\).
\[\mathbf{Cl}_{(1, n)}(\theta)=\int_0^{\theta}x^n\,\text{Cl}_{1}(x)\,\mathrm{d}x= -\int_0^{\theta}x^n\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x\]
Applying the series definition for \(\displaystyle \text{Cl}_1(\theta)\) this can be written as
\[\mathbf{Cl}_{(1, n)}(\theta)=-\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^n\cos kx\,\mathrm{d}x\]
Although tedious to derive, the closed form of that last trigonometric integral is easily deduced. Define
\[\mathcal{I}_{(p)}=\int_0^{\theta}x^p\cos kx\,\mathrm{d}x\]
Then we note that, for \(p > 2\):
\[\mathcal{I}_{(p)}=\frac{x^p}{k}\sin kx\,\Biggr|_0^{\theta}+\frac{px^{p-1}}{k^2}\cos kx\,\Biggr|_0^{\theta}-\frac{p(p-1)}{k^2}\mathcal{I}_{(p-2)}\]
A similarly, for \(p > 4\):
\[\begin{align*}
\mathcal{I}_{(p)}&=\frac{x^p}{k}\sin kx\,\Biggr|_0^{\theta}+\frac{px^{p-1}}{k^2}\cos kx\,\Biggr|_0^{\theta}- \frac{p(p-1)x^{p-2}}{k^3}\sin kx\,\Biggr|_0^{\theta}\\
&~~~-\frac{p(p-1)(p-2)x^{p-3}}{k^4}\cos kx\,\Biggr|_0^{\theta}+\frac{p(p-1)(p-2)(p-3)}{k^4}\mathcal{I}_{(p-4)}
\end{align*}\]
Using the iteration process above, and creating two sums - one for sine terms and the other for cosine terms - we get the desired result:
\[\mathcal{I}_{(p)}=p!\,\left[\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{x^{p-2j}\sin kx}{k^{2j+1}(p-2j)!}\Biggr|_0^{\theta}+ \sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{x^{p-2j-1}\cos kx}{k^{2j+2}(p-2j-1)!)}\Biggr|_0^{\theta} \right]\]
Inserting this into our moment integral gives:
\[\begin{align*}
&\mathbf{Cl}_{(1, p)}(\theta)=\int_0^{\theta}x^p\,\text{Cl}_{1}(x)\,\mathrm{d}x= -\int_0^{\theta}x^p\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x=-\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^p\cos kx\,\mathrm{d}x\\
&=-p!\,\sum_{k=1}^{\infty}\frac{1}{k}\,\left[\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{x^{p-2j}\sin kx}{k^{2j+1}(p-2j)!}\Biggr|_0^{\theta}+ \sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{x^{p-2j-1}\cos kx}{k^{2j+2}(p-2j-1)!)}\Biggr|_0^{\theta} \right]
\end{align*}\]
For the lower bound - \(x=0\) - the terms in the (finite!) sine series vanish. The same is true for all the lower bound term in the (finite) cosine series, except for the final term - containing \(x_0\), which is present only when \(p=2m+1\) is odd, in which case this final cosine term is \(\displaystyle (-1)^{\lfloor (p-1)/2 \rfloor +1} / k^{p+1}\,\). To account for this term, we introduce the function
\[\frac{[1+(-1)^{p+1}]}{2} = \begin{cases} 0, & \text{if }p\text{ is even} \\ 1, & \text{if }p\text{ is odd} \end{cases}\]
Finally, expressing our sum in terms of Clausen functions, we arrive at:
\(\Large\mathbf{\color{Purple}{Result ~10:}}\)
\[\begin{align*}
&\int_0^{\theta}x^p\,\text{Cl}_{1}(x)\mathrm{d}x\\
&=-p!\,\left[ \sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{{\theta}^{\,p-2j}}{(p-2j)!}\text{Cl}_{2j+2}(\theta)+ \sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{{\theta}^{\,p-2j-1}}{(p-2j-1)!)}\text{Cl}_{2j+3}(\theta)\right]\\
&~~~+p! (-1)^{\lfloor (p-1)/2 \rfloor} \frac{[1+(-1)^{p+1}]}{2}\zeta(p+2)
\end{align*}\]


A number of simple - but nonetheless important - trigonometric integrals follow immediately from the previous evaluation. For example
\[\begin{align*}
&\int_0^{\theta}x^p\,\text{Cl}_{1}(x)\,\mathrm{d}x= -\int_0^{\theta}x^p\ln\left(2\sin\frac{x}{2}\right)\,\mathrm{d}x\\
&=-\frac{\theta^{\,p+1}}{p+1}\ln\left(2\sin\frac{\theta}{2}\right)+\frac{1}{2(p+1)}\,\int_0^{\theta}x^{p+1}\cot\frac{x}{2}\,\mathrm{d}x
\end{align*}\]
Which can be re-written in the more convenient form:
\(\Large\mathbf{\color{Purple}{Result ~11:}}\)
\[\begin{align*}
&\int_0^{\phi}x^{p+1}\cot x\,\mathrm{d}x\\
&=(p+1)! \frac{(-1)^{\lfloor (p-1)/2 \rfloor}[1+(-1)^{p+1}]}{2^{p+2}}\zeta(p+2)+\phi^{p+1}\ln(2\sin\phi)\\
&~~~-(p+1)!\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^j\frac{{\phi}^{\,p-2j}}{2^{2j+1}(p-2j)!}\text{Cl}_{2j+2}(\phi)\\
&~~~-(p+1)!\,\sum_{j=0}^{\lfloor {(p-1)/2} \rfloor}(-1)^j\frac{{\phi}^{\,p-2j-1}}{2^{2j+2}(p-2j-1)!}\text{Cl}_{2j+3}(\phi)
\end{align*}\]


\(\mathbf{\color{DarkOrange}{Logcosine ~moments - ~part ~1:}}\)
Following on from the logsine moments above, we find that the equivalent logcosine moments are slightly trickier - which was to be expected - although they are far richer, since the complex parts also yield useful information.
By analogy, we start off with:
\[\begin{align*}
&\int_0^{\theta}x^m\ln\left(2\cos\frac{x}{2}\right)\,\mathrm{d}x=\int_0^{\theta}x^m\ln\left(\frac{1+e^{-ix}}{e^{-ix/2}}\right)\,\mathrm{d}x\\
&=\int_0^{\theta}x^m\ln(1+e^{-ix})\,\mathrm{d}x+i\,\frac{\theta^{m+2}}{2(m+2)}
\end{align*}\]
We'll ignore that final complex function of \(\theta\) for now, and continue with the evaluation of the complex logarithmic integral part:
\[\begin{align*}
&\int_0^{\theta}x^m\ln(1+e^{-ix})\,\mathrm{d}x=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}\int_0^{\theta}x^m(\cos kx -i\,\sin kx)\,\mathrm{d}x\\
&=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}\int_0^{\theta}x^m\cos kx\,\mathrm{d}x-i\,\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}\int_0^{\theta}x^m\sin kx\,\mathrm{d}x\\
&=\int_0^{\theta}x^m\left[\text{Cl}_1(x)-\frac{1}{2}\text{Cl}_1(2x)\right]\,\mathrm{d}x-i\,\int_0^{\theta}x^m\left[\text{Sl}_1(x)-\frac{1}{2}\text{Sl}_1(2x)\right]\,\mathrm{d}x\\
&\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^m\left(\cos kx-\frac{\cos 2kx}{2}\right)\,\mathrm{d}x-i\,\sum_{k=1}^{\infty}\frac{1}{k}\int_0^{\theta}x^m\left(\sin kx-\frac{\sin 2kx}{2}\right)\,\mathrm{d}x
\end{align*}\]
We already have the closed form for the two leftmost CL-type integrals, so it remains to find the remaining two SL-types. [The real logcosine moments are omitted below, since they are easily deduced from the previous result]. Let
\[\mathcal{I}_{(p)}=\int_0^{\theta}x^p\sin kx\,\mathrm{d}x=-\frac{1}{k}\cos kx\Biggr|_0^{\theta}+\frac{px^{p-1}}{k^2}\sin kx\Biggr|_0^{\theta}-\frac{p(p-1)}{k^2}\mathcal{I}_{(p-2)}=\,\cdots\]
As before, a similar iteration process leads to the general result:
\[\begin{align*}
&\int_0^{\theta}x^p\sin kx\,\mathrm{d}x= \\
&p!\,\left[\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{k^{2j+1}(p-2j)!}\cos kx \,\Biggr|_0^{\theta}+\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{k^{2j+2}(p-2j-1)!}\sin kx\,\Biggr|_0^{\theta}\right]
\end{align*}\]
So the imaginary part of \(\displaystyle \int_0^{\theta}x^p\ln\left(2\cos\frac{x}{2}\right)\,\mathrm{d}x\) yields
\[\begin{align*}
&p!\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{k^{2j+1}(p-2j)!}\cos kx \,\Biggr|_0^{\theta}\\
&+p!\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{k^{2j+2}(p-2j-1)!}\sin kx\,\Biggr|_0^{\theta}\\
&+\frac{p!}{2}\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{(2k)^{2j+1}(p-2j)!}\cos 2kx \,\Biggr|_0^{\theta}\\
&-\frac{p!}{2}\,\sum_{k=0}^{\infty}\frac{1}{k}\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{(2k)^{2j+2}(p-2j-1)!}\sin 2kx\,\Biggr|_0^{\theta}+\frac{\theta^{m+2}}{2(m+2)}=0
\end{align*}\]
\[\begin{align*}
&p!\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{(p-2j)!}\text{Sl}_{2j+2}(x)\,\Biggr|_0^{\theta}+p!\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{(p-2j-1)!}\text{Sl}_{2j+3}(x)\,\Biggr|_0^{\theta}\\
&-\frac{p!}{2}\,\sum_{j=0}^{\lfloor {p/2} \rfloor}(-1)^{j+1}\frac{x^{p-2j}}{2^{2j+1}(p-2j)!}\text{Sl}_{2j+2}(2x)\,\Biggr|_0^{\theta}\\
&-\frac{p!}{2}\,\sum_{j=0}^{\lfloor {(p-1)2} \rfloor}(-1)^{j+1}\frac{x^{p-2j-1}}{2^{2j+2}(p-2j-1)!}\text{Sl}_{2j+3}(2x)\,\Biggr|_0^{\theta}+\frac{\theta^{m+2}}{2(m+2)}=0
\end{align*}\]
As promised before - on other threads, and indeed other forums - I'll start to find closed form expressions for various polygamma functions, at the rational arguments $1/2, 1/3, 2/3, 1/4 \(,\) 3/4, 1/6$, and \(5/6\). This might take a while, and be posted in stages.
To start with, let's consider the following particular Clausen function of (arbitrary) odd order:
\[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (\pi k/3)}{k^{2m+1}}\]
We want to split this into six sums, where the first sum contains the first of every six terms, the second contains the second of every six terms, and so on. We also change summation index so our new series start at \(k=0\), rather than \(k=1\) above.
\[\begin{align*}
&\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (\pi k/3)}{k^{2m+1}}=\\
&\sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+1)}{(6k+1)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+2)}{(6k+2)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+3)}{(6k+3)^{2m+1}}+\\
&\sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+4)}{(6k+4)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+5)}{(6k+5)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{\cos\dfrac{\pi}{3}(6k+6)}{(6k+6)^{2m+1}}
\end{align*}\]
Simplify the trig term in each series:
\[\begin{align*}
\cos \frac{\pi}{3}(6k+n)&=\cos\left(2\pi k+\frac{\pi n}{3}\right)\\
&=\cos 2\pi k\cos\frac{\pi n}{3}-\sin 2\pi k\sin\frac{\pi n}{3}\equiv \cos\frac{\pi n}{3}
\end{align*}\]
Our new sextet of series is thus
\[\begin{align*}
&\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\cos\left(\frac{\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}+ \cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}\\
&+\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}+ \cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}\\
&+\cos\left(\frac{5\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+ \cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}
\end{align*}\]
Multiply both sides by \(6^{2m+1}\), and then subtract the third and sixth series on the RHS from the Clausen term on the LHS (using \(\displaystyle \cos\pi = -1\,\) and \(\displaystyle \cos 2\pi=1\,\) ) to obtain:
\[\begin{align*}
&6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\sum_{k=0}^{\infty}\frac{1}{(k+1/2)^{2m+1}}-\sum_{k=0}^{\infty}\frac{1}{(k+1)^{2m+1}}\\
&=\cos\left(\frac{\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+1/6)^{2m+1}}+ \cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+1/3)^{2m+1}}\\
&~~~+\cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+2/3)^{2m+1}}+\cos\left(\frac{5\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+5/6)^{2m+1}}
\end{align*}\]
Express the cosine terms on the RHS in real/rational form to make the RHS
\[\begin{align*}
&\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+1/6)^{2m+1}}- \frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+1/3)^{2m+1}}\\
-&\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+2/3)^{2m+1}}+\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+5/6)^{2m+1}}
\end{align*}\]
Now use
\[\psi_{n\ge 1}(x)=(-1)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{(k+x)^{n+1}}\]
to re-write the RHS as:
\[\begin{align*}
&\frac{1}{2}\left(\frac{(-1)^{2m}}{(2m)!}\right)\Bigg\{ \psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) +\psi_{2m}\left( \frac{5}{6} \right) \Bigg\}\\
=&\frac{1}{2\,(2m)!}\, \Bigg\{ \psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) +\psi_{2m}\left( \frac{5}{6} \right) \Bigg\}
\end{align*}\]
Next, apply the same process to the two series on the LHS (with the Clausen term):
\[\begin{align*}
&6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\sum_{k=0}^{\infty}\frac{1}{(k+1/2)^{2m+1}}-\sum_{k=0}^{\infty}\frac{1}{(k+1)^{2m+1}}\\
=&6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\frac{1}{(2m)!}\Bigg\{\psi_{2m}\left(\frac{1}{2}\right)-\psi_{2m}(1)\Bigg\}
\end{align*}\]
Multiplying both sides by \(2(2m)!\) then gives the identity
\[\begin{align*}
&2\, (2m)! \,6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+2\psi_{2m}\left(\frac{1}{2}\right)-2\psi_{2m}(1)\\
=& \psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) +\psi_{2m}\left( \frac{5}{6} \right)
\end{align*}\]
Next, repeat all of the above, but this time in terms of the Clasuen function with argument \(2\pi /3\)
\[\begin{align*}
&\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (2\pi k/3)}{k^{2m+1}}\\
&=\cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}+ \cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+\\
&~~~\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}+ \cos\left(\frac{8\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}+\\
&~~~\cos\left(\frac{10\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+ \cos\left(4\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}\\
&=-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}} -\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+\sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}\\
&~~~- \frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+ \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}
\end{align*}\]
Continue exactly as before, and you get the second relation
\[\begin{align*}
&2\, (2m)! \,6^{2m+1}\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)-2\psi_{2m}\left(\frac{1}{2}\right)-2\psi_{2m}(1)\\
&=-\psi_{2m}\left( \frac{1}{6} \right) -\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right) -\psi_{2m}\left( \frac{5}{6} \right)
\end{align*}\]
Relative to the arguments \(1/3, 2/3, 1/6\), and \(5/6\), the arguments \(1\) and \(1/2\) are pretty straightforward, so I'll simply state them now and prove them later.
\[\psi_{2m}(1)=-(2m)!\zeta(2m+1)~,~\psi_{2m}\left(\frac{1}{2}\right)=-(2m)!\,(2^{2m+1}-1)\zeta(2m+1)\]
Now, if you add the final forms or relation \(1\) and relation \(2\) you get:
\[\begin{align*}
&2\, (2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]-4\psi_{2m}(1)\\
=&2\, (2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+4\,(2m)!\zeta(2m+1)\\
=&2\Bigg\{ \psi_{2m}\left( \frac{1}{3} \right) +\psi_{2m}\left( \frac{2}{3} \right)\Bigg\}
\end{align*}\]
Or
\[\begin{align*}
&(2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+2\,(2m)!\zeta(2m+1)\\
=&\psi_{2m}\left( \frac{1}{3} \right) +\psi_{2m}\left( \frac{2}{3} \right)
\end{align*}\]
On the other hand, the reflection formula for the polygamma function gives:
\[\begin{align*}
&\psi_{2m}(x)-\psi_{2m}(1-x)=\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\\
\Rightarrow &\psi_{2m}\left( \frac{1}{3} \right) -\psi_{2m}\left( \frac{2}{3} \right)=\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\,\Biggr|_{x=1/3}
\end{align*}\]
So
\[\begin{align*}
&\psi_{2m}\left( \frac{1}{3} \right)\\
=&\displaystyle \frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\,(2m)!\zeta(2m+1)+\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\,\Biggr|_{x=1/3}
\end{align*}\]
and
\[\begin{align*}
&\psi_{2m}\left( \frac{2}{3} \right)\\
=&\frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\,(2m)!\zeta(2m+1)-\pi\frac{\mathrm{d}^{2m}}{\mathrm{d}x^{2m}}\cot\pi x\,\Biggr|_{x=1/3}
\end{align*}\]

Clausen Functions (and related series, functions, integrals)的更多相关文章

  1. Part 16 Important concepts related to functions in sql server

    Important concepts related to functions in sql server

  2. Oracle Single-Row Functions(单行函数)——NULL-Related Functions

    参考资料:http://docs.oracle.com/database/122/SQLRF/Functions.htm#SQLRF006 Single-row functions return a ...

  3. SQL Fundamentals || Single-Row Functions || 日期函数date functions

    SQL Fundamentals || Oracle SQL语言   SQL Fundamentals: Using Single-Row Functions to Customize Output使 ...

  4. SQL Fundamentals || Single-Row Functions || 数字函数number functions

    SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使用单 ...

  5. SQL Fundamentals || Single-Row Functions || 字符函数 character functions

    SQL Fundamentals || Oracle SQL语言   SQL Fundamentals: Using Single-Row Functions to Customize Output使 ...

  6. What are the benefits to using anonymous functions instead of named functions for callbacks and parameters in JavaScript event code?

     What are the benefits to using anonymous functions instead of named functions for callbacks and par ...

  7. Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic numbers

    链接:http://pan.baidu.com/s/1eSNkz4Y

  8. Think Python - Chapter 03 - Functions

    3.1 Function callsIn the context of programming, a function is a named sequence of statements that p ...

  9. MySQL 8.0.2: Introducing Window Functions

    July 18, 2017MySQL, SQLDag Wanvik MySQL 8.0.2 introduces SQL window functions, or analytic functions ...

随机推荐

  1. C++-怎样写程序(面向对象)

    使用编程语言写好程序是有技巧的. 主要编程技术: 1. 编程风格 2. 算法 3. 数据结构 4. 设计模式 5. 开发方法 编程风格指的是编程的细节,比如变量名的选择方法.函数的写法等. 算法是解决 ...

  2. C语言-宏定义与使用分析

    1.C语言中的宏定义 #define是预处理器处理的单元实体之— #define定义的宏可以出现在程序的任意位置 #define定义之后的代码都可以使用这个宏 2.定义宏常量 #define定义的宏常 ...

  3. java.awt.Font

    显示效果 Font mf = new Font(String 字体,int 风格,int 字号);字体:TimesRoman, Courier, Arial等风格:三个常量 lFont.PLAIN, ...

  4. Mapper-元素和属性

    Mapper.xml文件内部的元素和属性     parameterType(输入类型) §  传递简单类型 §  使用#{}占位符,或者${}进行sql拼接, #{}括号中的值可以任意, ${}括号 ...

  5. CentOS7.5升级OpenSSH

    实验环境 OS:CentOS 7.5 当前openssh版本:OpenSSH_7.4p1 升级后的openssh版本:OpenSSH_8.0p1 开通telnet 为了防止升级过程中ssh断连,保险起 ...

  6. Intellij-Idea使用小细节

    SpringMVC项目部署到tomcat中文乱码,tomcat的配置里面加上 -Dfile.encoding=UTF-8

  7. C语言合法标识符 题解

    输入一个字符串,判断其是否是C的合法标识符.  Input输入数据包含多个测试实例,数据的第一行是一个整数n,表示测试实例的个数,然后是n行输入数据,每行是一个长度不超过50的字符串. Output对 ...

  8. 【转载】Java泛型(一)

    转自:http://www.cnblogs.com/lzq198754/p/5780426.html 1.为什么需要泛型 泛型在Java中有很重要的地位,网上很多文章罗列各种理论,不便于理解,本篇将立 ...

  9. arcgis字段计算器

    arcgis字段计算器 一.VB脚本 1.取某字段前几位或者后几位 ) ) 2.合并字段,中间加符号 Dim a if [ZDDM2] ="" Then a= [ZDDM1] el ...

  10. Javascript模块化编程之CommonJS,AMD,CMD,UMD模块加载规范详解

    JavaSript模块化 在了解AMD,CMD规范前,还是需要先来简单地了解下什么是模块化,模块化开发?     模块化是指在解决某一个复杂问题或者一系列的杂糅问题时,依照一种分类的思维把问 题进行系 ...