np一些基本操作2
import numpy as np
arr1 = np.arange(32).reshape(8,4)
print(arr1)
arr1 = arr1.reshape(-1);
print(arr1)
arr2 = np.logspace(1,8,8,base=2).reshape(8,1)
print(arr2)
##数组广播的规律,要么两个维度相同,要么某一个维度为1
##矩阵积为dot A np的行乘以B np的列的和,所以行列要一致。
arr3 = [[15930.2,244.2],
[8111.87,148.87],
[13722.46,221.1]]
arr3 = np.array(arr3,float);
print(arr3.dtype)
##利用切片取数组
print(arr3[:,0])
print("======================================")
print(arr3[[0,2]])
print("======================================")
print(arr3[[0,2],[1,1]])
print("======================================")
##取多行多列,使用np的索引器,np.ix_(m,n)
print(arr3[np.ix_([0,2],[1])])
##数组转置
arr3 = [[15930.2,244.2],
[8111.87,148.87],
[13722.46,221.1]]
arr3 = np.array(arr3)
print(arr3.T)
xiaoming_score=np.array([100,60,50,65])
#取不及格分数
print(xiaoming_score >= 60)
condition = xiaoming_score >= 60
print(xiaoming_score[condition])#取出对应的数,多维同样适用,会降低到一维数据
xiaoming_score2=np.array([[100,60,50,65],[20,30,40,50]])
print(xiaoming_score2.transpose())#数组的转置和轴兑换
##数组的拉伸和合并 (如果reps参数只写一个数值为横向拉伸的倍数,如果使用[m,n] m为纵向 n为横向拉伸的倍数)
print(np.tile(xiaoming_score2,[2,1]))
print("===================================================")
##合并操作
xiaoming_2_score = np.array([[90,90,90,90],[88,88,88,88]])
print(np.stack([xiaoming_score2,xiaoming_2_score],axis=0))#沿着某一个轴合并 0是两块合并 1是拆快合并 2是拿对应个数合并
print("===================================================")
##堆叠操作
print(np.vstack([xiaoming_score2,xiaoming_2_score]))
print(np.hstack([xiaoming_score2,xiaoming_2_score]))
##np 的函数操作
print("===================================================")
arry2 = np.random.randint(-10,10,[3,4])
print(arry2)
#绝对值
print(np.fabs(arry2))
print(np.sqrt(arry2))#开方
print(np.square(arry2))#平方
#exp #计算各个元素的指数e的x次方
#log10 log2 log1p
arr3 = np.arange(1,11)
print(arr3)
print(np.log2(arr3))#相当于2为底,求arr3每个元素的多少次方等于每个位置元素 eg:1=2^x log就是e为底
#np.log1p 以1+x为真数e为底的对数
#以5为底 可以利用换底公式
arry4 = np.log2(arr3)/np.log2(5)
print(arry4)
#ceil 向上取整 floor 向下取整
np.floor(arry4)
print(np.floor(arry4))
#四舍五入 np.rint
#保留几位小数 np.around(arr4,decumals=2)
#modf 把小数拆开成两个数组,返回小数位和整数位
#判断元素是否是nan isnan 可以用布尔值索引取出数组中nan ~取反操作
#np.isfinite 是否有穷数 isinf(inf 是无穷数)
#mod
arr6 = np.arange(10)
print(arr6)
print(np.mod(arr6,3))
#dot 举证积操作 ##eg:np.greater(arr5,arr6) less equal less_equal not_equal
np.power(arr6,3)#几次方
score = np.array([
[80,90,87,56,77],
[55,45,87,90,98],
[100,12,100,89,77],
[77,33,87,79,60]
])
print(score)
print(np.amax(score))#求成绩的最高分
print(np.amax(score,axis=0))#竖向求最大
print(np.amax(score,axis=1))#横向求最大
print(np.mean(score,axis=1))#横向求平均分
#方差和标准差
#方差,np.mean(a-a.mean()**2)
print(np.mean(np.square(score-np.mean(score))))
print(np.var(score))
##再开方是标准差 std是直接求标准差
random1 = np.random.randint(0,10,10)
random2 = np.random.randint(0,10,10)
print(random1)
print(random2)
cond = random1 > random2
print([x if z else y for(x,y,z) in zip(random1,random2,cond)])#取较大数合并 多维对比合并用np.where(cond,random1,random2)
#print(x,y,z)
# np.unique 去除重复值
arr10 = np.random.randint(0,5[5,5])
print(arr10)
np.unique(arr10)
np一些基本操作2的更多相关文章
- np一些基本操作1
##生成一个一维数组import numpy as np;nb7 = np.arange(0,100,2);print(nb7)print("======================== ...
- Python 数据处理扩展包: pandas 模块的DataFrame介绍(创建和基本操作)
DataFrame是Pandas中的一个表结构的数据结构,包括三部分信息,表头(列的名称),表的内容(二维矩阵),索引(每行一个唯一的标记). 一.DataFrame的创建 有多种方式可以创建Data ...
- MatplotLib常用基本操作
本文记录matlibplot常用基本操作,都是基本功能,不涉及复杂联合操作,其中各用法详细用法可参考官网: 1. 基本画图操作 ##mofan_matplotlib.pyplot import mat ...
- matplotlib绘图的基本操作
转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...
- DataFrame基本操作
这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起.---------励志做一个优雅的网上搬运工 1.建立dataframe (1)Dict to Dataframe df = pd. ...
- pandas学习(创建数据,基本操作)
pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- TensorFlow、numpy、matplotlib、基本操作
一.常量的定义 import tensorflow as tf #类比 语法 api 原理 #基础数据类型 运算符 流程 字典 数组 data1 = tf.constant(2,dtype=tf.in ...
随机推荐
- vsftp 被动模式配置
直接复制粘切过来就能用 这里只讲下配置,安装方法可以直接yum 配置文件修改 anonymous_enable=NO #关闭匿名用户 xferlog_file=/var/log/vsftpd.log ...
- Java 多线程 - 创建线程的方法 + Executors.newXXXThreadPool()缺点
java中创建线程的三种方法以及区别: https://www.cnblogs.com/3s540/p/7172146.html 通过Executor 的工具类,创建三种类型的普通线程池: https ...
- HTML 5 基础
HTML 参考手册 HTML 5 视频 controls 属性供添加播放.暂停和音量控件. <video src="movie.ogg" width="320&qu ...
- windows cmd command
////////////////// ===>windows + r //gpedit.msc 用户组策略 ///////////////// ===>cmd //ping www.bai ...
- 使用SharpZipLib实现zip压缩
使用国外开源加压解压库ICSharpCode.SharpZipLib实现加压,该库的官方网站为http://www.icsharpcode.net/OpenSource/SharpZipLib/D ...
- <scrapy爬虫>爬取quotes.toscrape.com
1.创建scrapy项目 dos窗口输入: scrapy startproject quote cd quote 2.编写item.py文件(相当于编写模板,需要爬取的数据在这里定义) import ...
- ReadyAPI 教程和示例(一)
原文:ReadyAPI 教程和示例(一) 声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 通过下图你可以快速浏览一下主要的ReadyAP ...
- pycharm IDE在导入自定义模块时提示有错,但实际没错
在建立python项目时,有时为了区分资源和代码,如在项目文件夹下新建img和src两个文件夹,这时导入自定义模块会提示错误,结果没错但感觉别扭.如: 这是因为pycharm提示功能是从根目录上去寻找 ...
- scull 中的设备注册
在内部, scull 使用一个 struct scull_dev 类型的结构表示每个设备. 这个结构定义为: struct scull_dev { struct scull_qset *data; ...
- BOM相关知识点
1.BOM概念:Browser Object Model 浏览器对象模型作用:提供了使用JS操作浏览器的接口 2.BOM包含了许多对象信息,包括如下这些:(1)screen 屏幕信息(2)locati ...