import numpy as np
arr1 = np.arange(32).reshape(8,4)
print(arr1)
arr1 = arr1.reshape(-1);
print(arr1)
arr2 = np.logspace(1,8,8,base=2).reshape(8,1)
print(arr2)
##数组广播的规律,要么两个维度相同,要么某一个维度为1
##矩阵积为dot A np的行乘以B np的列的和,所以行列要一致。
arr3 = [[15930.2,244.2],
[8111.87,148.87],
[13722.46,221.1]]
arr3 = np.array(arr3,float);
print(arr3.dtype)
##利用切片取数组
print(arr3[:,0])
print("======================================")
print(arr3[[0,2]])
print("======================================")
print(arr3[[0,2],[1,1]])
print("======================================")
##取多行多列,使用np的索引器,np.ix_(m,n)
print(arr3[np.ix_([0,2],[1])])
##数组转置
arr3 = [[15930.2,244.2],
[8111.87,148.87],
[13722.46,221.1]]
arr3 = np.array(arr3)
print(arr3.T)
xiaoming_score=np.array([100,60,50,65])
#取不及格分数
print(xiaoming_score >= 60)
condition = xiaoming_score >= 60
print(xiaoming_score[condition])#取出对应的数,多维同样适用,会降低到一维数据
xiaoming_score2=np.array([[100,60,50,65],[20,30,40,50]])
print(xiaoming_score2.transpose())#数组的转置和轴兑换
##数组的拉伸和合并 (如果reps参数只写一个数值为横向拉伸的倍数,如果使用[m,n] m为纵向 n为横向拉伸的倍数)
print(np.tile(xiaoming_score2,[2,1]))
print("===================================================")
##合并操作
xiaoming_2_score = np.array([[90,90,90,90],[88,88,88,88]])
print(np.stack([xiaoming_score2,xiaoming_2_score],axis=0))#沿着某一个轴合并 0是两块合并 1是拆快合并 2是拿对应个数合并
print("===================================================")
##堆叠操作
print(np.vstack([xiaoming_score2,xiaoming_2_score]))
print(np.hstack([xiaoming_score2,xiaoming_2_score]))
##np 的函数操作
print("===================================================")
arry2 = np.random.randint(-10,10,[3,4])
print(arry2)
#绝对值
print(np.fabs(arry2))
print(np.sqrt(arry2))#开方
print(np.square(arry2))#平方
#exp #计算各个元素的指数e的x次方
#log10 log2 log1p
arr3 = np.arange(1,11)
print(arr3)
print(np.log2(arr3))#相当于2为底,求arr3每个元素的多少次方等于每个位置元素 eg:1=2^x log就是e为底
#np.log1p 以1+x为真数e为底的对数
#以5为底 可以利用换底公式
arry4 = np.log2(arr3)/np.log2(5)
print(arry4)
#ceil 向上取整 floor 向下取整
np.floor(arry4)
print(np.floor(arry4))
#四舍五入 np.rint
#保留几位小数 np.around(arr4,decumals=2)
#modf 把小数拆开成两个数组,返回小数位和整数位
#判断元素是否是nan isnan 可以用布尔值索引取出数组中nan ~取反操作
#np.isfinite 是否有穷数 isinf(inf 是无穷数)
#mod
arr6 = np.arange(10)
print(arr6)
print(np.mod(arr6,3))
#dot 举证积操作 ##eg:np.greater(arr5,arr6) less equal less_equal not_equal
np.power(arr6,3)#几次方
score = np.array([
[80,90,87,56,77],
[55,45,87,90,98],
[100,12,100,89,77],
[77,33,87,79,60]
])
print(score)
print(np.amax(score))#求成绩的最高分
print(np.amax(score,axis=0))#竖向求最大
print(np.amax(score,axis=1))#横向求最大
print(np.mean(score,axis=1))#横向求平均分
#方差和标准差
#方差,np.mean(a-a.mean()**2)
print(np.mean(np.square(score-np.mean(score))))
print(np.var(score))
##再开方是标准差 std是直接求标准差
random1 = np.random.randint(0,10,10)
random2 = np.random.randint(0,10,10)
print(random1)
print(random2)
cond = random1 > random2
print([x if z else y for(x,y,z) in zip(random1,random2,cond)])#取较大数合并 多维对比合并用np.where(cond,random1,random2)
#print(x,y,z)
# np.unique 去除重复值
arr10 = np.random.randint(0,5[5,5])
print(arr10)
np.unique(arr10)

np一些基本操作2的更多相关文章

  1. np一些基本操作1

    ##生成一个一维数组import numpy as np;nb7 = np.arange(0,100,2);print(nb7)print("======================== ...

  2. Python 数据处理扩展包: pandas 模块的DataFrame介绍(创建和基本操作)

    DataFrame是Pandas中的一个表结构的数据结构,包括三部分信息,表头(列的名称),表的内容(二维矩阵),索引(每行一个唯一的标记). 一.DataFrame的创建 有多种方式可以创建Data ...

  3. MatplotLib常用基本操作

    本文记录matlibplot常用基本操作,都是基本功能,不涉及复杂联合操作,其中各用法详细用法可参考官网: 1. 基本画图操作 ##mofan_matplotlib.pyplot import mat ...

  4. matplotlib绘图的基本操作

    转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...

  5. DataFrame基本操作

    这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起.---------励志做一个优雅的网上搬运工 1.建立dataframe (1)Dict to Dataframe df = pd. ...

  6. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  7. Python数据分析库pandas基本操作

    Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...

  8. python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  9. TensorFlow、numpy、matplotlib、基本操作

    一.常量的定义 import tensorflow as tf #类比 语法 api 原理 #基础数据类型 运算符 流程 字典 数组 data1 = tf.constant(2,dtype=tf.in ...

随机推荐

  1. SVN 分支操作

    一  拉取分支 1 选择浏览 2 输入svn项目路径:https://IP/svn/ 3 选择拉取的项目 4 下载到本地路劲 右键选中的分支—CheckOut 选择本地路劲 二 分支合并 1 分支合并 ...

  2. Android开发 string.xml资源添加参数

    挖坑:参考:https://www.cnblogs.com/leelugen/p/6685905.html

  3. window 下kafka 配置测试

    1.准备工作 1.1 java环境 1.2 下载并解压到D:\zookeeper-3.4.13  下载并解压到 D:\kafka_2.12-2.1.0 2.安装zookeeper .kafka 我安装 ...

  4. CNN 常用的几个模型

    LeNet5 论文:http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf LeNet-5:是Yann LeCun在1998年设计的用于手写数字识别的卷 ...

  5. 如何HOOK桌面窗口消息

    代码详见:http://download.csdn.net/detail/swanabin/6771465 需求:截获桌面窗口鼠标单击事件,解析所选中的桌面 Item,并将解析后的 item 信息发送 ...

  6. java web项目部署到云服务器

    第一步把java web项目打包 成war包 第二步:在Build选里选择build Artfacts->water:war->Build war包建立完毕. 第三步:在官网下载winsc ...

  7. Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)

    Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...

  8. C# 16进制与字符串、字节数组之间的转换(串口通讯中)

    1.c#中如何将十进制数的字符串转化成十六进制数的字符串//十进制转二进制 Console.WriteLine("十进制166的二进制表示: "+Convert.ToString( ...

  9. lxml etree对存在的xml添加新节点,新节点没有排版格式化

    新添加的时候如果不做处理,是这个样子 要在解析xml加上 parser = etree.XMLParser(remove_blank_text=True)xml = etree.parse(major ...

  10. js正则笔记

    //内容 var innerhtml = $('.reading_box_m').html().replace(/ tag="?[一二三四五六七八九十]+"?/ig, " ...