1 .anti-nim

2 . 可以拆分的

sg函数的学习的更多相关文章

  1. HDU_5724_状态压缩的sg函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5724 题目大意:n行20列的棋盘,对于每行,如果当前棋子右边没棋子,那可以直接放到右边,如果有就跳过放 ...

  2. SG函数学习

    尼姆博弈就是sg函数的简单体现 学习粗:https://blog.csdn.net/luomingjun12315/article/details/45555495 //f[N]:可改变当前状态的方式 ...

  3. 学习笔记--博弈组合-SG函数

    fye学姐的测试唯一的水题.... SG函数是一种游戏图每个节点的评估函数 具体定义为: mex(minimal excludant)是定义在整数集合上的操作.它的自变量是任意整数集合,函数值是不属于 ...

  4. SG函数学习总结

    有点散乱, 将就着看吧. 首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态. 对于N, P两种状态, 则有 1. 没有任何合法操作的状态, P; 2. 可以移动到P局 ...

  5. SG 函数学习

    \(Mex\) 运算 \(mex(S)\) 为不属于集合 \(S\) 的最小非负整数,即: \[mex(S)=\min \limits_{x \in \mathbb{N},x \not\in S} \ ...

  6. HDU 1536 sg函数

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  7. hdu-------(1848)Fibonacci again and again(sg函数版的尼姆博弈)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  8. 【转】博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  9. (转)博弈问题与SG函数

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

随机推荐

  1. [转]关于SSH与SSM的组成及其区别

    前言 当下SpringBoot盛行,咱再聊聊SpringBoot盛行之前的框架组合,当做复习巩固哈. 在聊之前,得先说说MVC,MVC全名是Model View Controller,是模型(mode ...

  2. dotnet core 2.1 使用阶梯编译

    在 dotnet core 2.1 可以使用阶梯编译的方法,从 dotnet framework 开始,在代码的所有方法在第一次进入的时候就需要使用 JIT 进行编译为本机的代码.可以看到代码是在第一 ...

  3. Vue 项目构建完成 ----发布项目

    发布项目 cmd  命令行 npm run build      执行打包文件 完成后就会有  3 个文件夹    分别是: 文件夹 :build     config      dist    in ...

  4. P1095 水仙花数

    题目描述 春天是鲜花的季节,水仙花就是其中最迷人的代表,数学上有个水仙花数,他是这样定义的:"水仙花数"是指一个三位数,它的各位数字的立方和等于其本身,比如:153=1^3+5^3 ...

  5. win10 uwp 使用 Microsoft.Graph 发送邮件

    在 2018 年 10 月 13 号参加了 张队长 的 Office 365 训练营 学习如何开发 Office 365 插件和 OAuth 2.0 开发,于是我就使用 UWP 尝试使用 Micros ...

  6. HDU 5912 Fraction(模拟)

    Problem Description Mr. Frog recently studied how to add two fractions up, and he came up with an ev ...

  7. ioctl 命令的实现

    ioctl 的 scull 实现只传递设备的配置参数, 并且象下面这样容易: switch(cmd) { case SCULL_IOCRESET: scull_quantum = SCULL_QUAN ...

  8. 备战省赛组队训练赛第十四场(UPC)

    codeforces:传送门 upc:传送门 外来题解: [1]:https://blog.csdn.net/ccsu_cat/article/details/86707446 [2]:https:/ ...

  9. 基于Springboot+Junit+Mockito做单元测试

    前言 前面的两篇文章讨论过< 为什么要写单元测试,何时写,写多细 >和<单元测试规范>,这篇文章介绍如何使用Springboot+Junit+Mockito做单元测试,案例选取 ...

  10. C# 获取进程退出代码

    我需要写一个程序,让这个程序知道另一个程序是否正常退出,于是就需要获取这个进程的退出代码 在程序如果需要手动退出,可以设置当前的退出代码 static void Main(string[] args) ...