Wannafly挑战赛25 因子 [数论]
一、题意
令 X = n!, 给定一大于1的正整数p 求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子
输入为两个数n, p (1e18>= n>= 10000 >= p >= 2)
二、分析
2.1前置知识:阶乘质因数分解
定理:在n!的标准分解式中,质因数p的指数h为
\[h = \left[ {\frac{n}{p}} \right] + \left[ {\frac{n}{{{p^2}}}} \right] + ... = \sum\limits_{r = 1}^\infty {\left[ {\frac{n}{{{p^r}}}} \right]} \]
推论:n!可以由他的质因数表示为
\[n! = \prod\limits_{p \le n} {{p^{\sum {\left[ {\frac{n}{{{p^r}}}} \right]} }}} \]
2.2本题思路
由题意可得,p的质因数肯定是n!的质因数;所以首先将p做质因数分解,得到p的各个质因数的指数h,再对每一个p的质因数求其在n!中的指数H
那么题中所求的K肯定是每一对H/h的数值中的最小值
\[ans = \arg \min \frac{{{H_i}}}{{{h_i}}}\]
三、代码
# include <iostream>
# include <cstdio>
using namespace std;
const long long INF = 1e18+;
long long n,p;
long long H(long long i)
{
long long res = ;
long long temp = n;
while(temp)
{
res += temp/i;
temp /= i;
}
return res;
}
void Solve()
{
long long ans = INF;
for(int i=;i<=p;i++)
{
if(p%i == )
{
long long h = ;
while(p%i==)
{
h++;
p/=i;
}
ans = min(ans,H(i)/h);
}
}
printf("%lld\n",ans);
}
int main()
{
while(scanf("%lld%lld",&n,&p)!=EOF)
{
Solve();
}
return ;
}
Wannafly挑战赛25 因子 [数论]的更多相关文章
- 牛客网Wannafly挑战赛25A 因子 数论
正解:小学数学数论 解题报告: 传送门 大概会连着写几道相对而言比较简单的数学题,,,之后就会比较难了QAQ 所以这题相对而言还是比较水的,,, 首先这种题目不难想到分解质因数趴,, 于是就先对p和n ...
- Wannafly挑战赛25游记
Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...
- 牛客网Wannafly挑战赛25A 因子(数论 素因子分解)
链接:https://www.nowcoder.com/acm/contest/197/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...
- Wannafly挑战赛25 A.因子
传送门 [https://www.nowcoder.com/acm/contest/197/A] 题意 给你n,m,让你求n!里有多少个m 分析 看这个你就懂了 [https://blog.csdn. ...
- Wannafly挑战赛25 A 因子 数学
题面 题意:令 X = n!,给定一大于1的正整数p,求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子,n,,p(1e18>=n>=1e4>=p>=2) ...
- Wannafly挑战赛25 B.面积并
链接 [https://www.nowcoder.com/acm/contest/197/B] 分析 特殊优先考虑 首先考虑r>=l这种情况就是圆的面积了 第二就是r<=内切圆的半径,这个 ...
- Wannafly挑战赛25 C 期望操作数 数学
题目 题意:给你你一个数x和一个数q,x<=q,每一次可以等概率把x变成[x,q]中任意一个数,问变成q的步数的期望,输出对998244353取模,多组询问 题解:首先肯定的是,可以预处理,因为 ...
- Wannafly挑战赛25 B 面积并 数学
题面 题意:有一个正n边形,它的外接圆的圆心位于原点,半径为l .以原点为圆心,r为半径作一个圆,求圆和这个正n边形的面积并.3<=n<=1e8 1<=l<=1e6 0< ...
- Wannafly挑战赛27
Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...
随机推荐
- navicat 导入SQL文件出错
1.新建数据库 在数据库名或者表名上右键 运行SQL语句 2.去掉对勾 F5刷新则可以发现导入的表.
- 从Kubernetes 1.14 发布,看技术社区演进方向
Kubernetes 1.14 正式发布已经过去了一段时间,相信你已经从不同渠道看过了各种版本的解读. 不过,相比于代码 Release,马上就要迎来5周岁生日的Kubernetes 项目接下来如何演 ...
- 关于IOS 微信浏览器 点击输入框自动放大问题
<meta name="viewport" content="width=device-width,initial-scale=1,user-scalable=0& ...
- Java安装完毕后的环境配置
右键计算机=>属性=>高级系统设置=>环境变量=>系统变量=>新建系统变量 变量名:JAVA_HOME变量值:E:\Program Files\Java\jdk-9.0. ...
- OJ大集合、
转载自:传送门 什么是OJ Online Judge系统(简称OJ)是一个在线的判题系统.用户可以在线提交程序源代码,系统对源代码进行编译和执行,并通过预先设计的测试数据来检验程序源代码的正确性. 一 ...
- 评分模型的检验方法和标准通常有:K-S指标、交换曲线、AR值、Gini数等。例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成功的应用价值。K-S值越大,表示评分模型能够将“好客户”、“坏客户”区分开来的程度越大。
评分模型的检验方法和标准通常有:K-S指标.交换曲线.AR值.Gini数等.例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成 ...
- 深入java面向对象三:抽象类和接口(转载)
文章系转载,地址: http://blog.csdn.net/xw13106209/article/details/6923556 1.概述 一个软件设计的好坏,我想很大程度上取决于它的整体架 ...
- Python--day26--封装和@property
---恢复内容开始--- @property:修饰过的方法不能传任何参数,把方法伪装成属性,没有这个装饰就像c1.area()这样调用,少了一个括号,没什么用. @name.setter:实现可以修改 ...
- centos linux mysql 10060远程错误代码
Navicat for MySQL远程连接数据错误代码10060 1.登陆远程linux服务器命令界面 vim /etc/sysconfig/iptables 进入防火墙配置修改 增加以下两条防火墙 ...
- [转]VsCode搭建Java开发环境(Spring Boot项目创建、运行、调试)
源码地址:https://github.com/YANGKANG01/Spring-Boot-Demo 安装扩展 安装如下两个主要扩展即可,这两个扩展已关联java项目开发主要使用的maven.spr ...