Improvement can be done in fulture:
1. the algorithm of constructing network from distance matrix. 
2. evolution of sliding time window
3. the later processing or visual analysis of generated graphs.

Thinking:

1.What's the ground truth in load profiles?

For clustering, there's no ground truth, so how to tune the parameters or options in step2, step3 and step4? In this paper, they have the labels of time series, so they use RI to guide their selection of parameters, for example: k and \epsilon.

Suppose: similar time series tend to connect to each other and form communities.

Background and related works

shaped based distance measures; feature based distance measures; structure based distance measures. time series clustering; community detection in networks.

Methodology

  1. data normalization
  2. time series distance calculation
  3. network construction
  4. community detection

Which step influence the clustering results:

distance calculation algorithm; network construction methods. community detection methods.

2. distance matrix

calculating the distance for each pair of time series in the data set and construct a distance matrix D, where dij is the distance between series Xi and XJ . A good choice of distance measure has strong influence on the network construction and clustering result.

3. network construction

Two common method: K-NN and \epsilon-NN;  EXPLORATION

Experiments

45 time series data sets.

Purpose: check the performance of each combination of step2, step3,and step4 to each data sets.

Index指标:Rand index.

Vary the parameters: the k of k-NN from 1 to n-1;  the epsilon of epsilon-NN from min(D) to max(D) in 100 steps.

Step2: Manhattan, Euclidean, infinite Norm, DTW, short time series, DISSIM, Complexity-Invariant, Wavlet tranform, Pearson correlation, Intergrated periodogram.

Step3: fast greedy; multilevel; walktrap; infomap; label propagration.

Step4: vary the parameter of k and \epsilon.

Results

1. the effect of k and \epsilon to the clustering results(RI).

The k-NN construction method just allows discrete values of k while the ε-NN method accepts continuous values. When k and ε are small, vertices tend to make just few connections.

??what's the meaning of A,B,C,D in figure 5.

2. the statistical test of the effect of different distance methods. Friedman test and Nemenyi test.

多个算法在多个数据库上的对比:

  • 如果样本符合ANOVA(repeated measure)的假设(如正态、等方差),优先使用ANOVA。
  • 如果样本不符合ANOVA的假设,使用Friedman test配合Nemenyi test做post-hoc。
  • 如果样本量不一样,或因为特定原因不能使用Friedman-Nemenyi,可以尝试Kruskal Wallis配合Dunn's test。值得注意的是,这种方法是用来处理独立测量数据,要分情况讨论。

DTW measure presents the best results for both network construction methods.

3. the statistical test of the effect of community detection algorithms. Friedman test and Nemenyi test.

4. comparison to rival methods.

i. some classic clustering algorithms: k-medoids, complete-linkage, single-linkage, average-linkage, median-linkage, centroid-linkage and diana;

ii. three up-to-date ones: Zhang’s method [41], Maharaj’s method [24] and PDC [5]

5. detect time series clusters with time-shifts

Suppose: Clustering algorithms should be capable of detecting groups of time series that have similar variations in time.

CBF dataset: 30个序列,一共三组, 全部正确分组/clustering.

6. detect shape patterns

1000 time series of length 128, four groups.

detect shape patterns (UD, DD, DU, UU);

Discussion

1. the same idea can be extended to multivariate time series clustering.

2. evaluate the simulation results using different indexes.

3. As future works, we plan to propose automatic strategies for choosing the best number of neighbors (k and ε) and speeding up the network construction method, instead of using the naive method.

4. We also plan to apply the idea to solve other kinds of problems in time series analysis, such as time series prediction.   ??

Supplementary knowledge: 

1. box plot

它能显示出一组数据的最大值最小值中位数、及上下四分位数

以下是箱形图的具体例子:

                            +-----+-+
* o |-------| + | |---|
+-----+-+ +---+---+---+---+---+---+---+---+---+---+ 分数
0 1 2 3 4 5 6 7 8 9 10

这组数据显示出:

  • 最小值(minimum)=5
  • 下四分位数(Q1)=7
  • 中位数(Med --也就是Q2)=8.5
  • 上四分位数(Q3)=9
  • 最大值(maximum )=10
  • 平均值=8
  • 四分位间距(interquartile range)={\displaystyle (Q3-Q1)}=2 (即ΔQ)

2. 观念转变, experiment部分也很重要,不是可有可无的, 要细看。

3. 统计学检验

常用的机器学习算法比较?

All models are wrong, but some are useful. ----------统计学家George Box.

4. univariate and multivariate time series. 

Univariate time series: Only one variable is varying over time. For example, data collected from a sensor measuring the temperature of a room every second. Therefore, each second, you will only have a one-dimensional value, which is the temperature.

Multivariate time series: Multiple variables are varying over time. For example, a tri-axial accelerometer三轴加速器. There are three accelerations, one for each axis (x,y,z) and they vary simultaneously over time.

Considering the data you showed in the question, you are dealing with a multivariate time series, where value_1value_2 andvalue_3 are three variables changing simultaneously over time.

PP: Time series clustering via community detection in Networks的更多相关文章

  1. PP: Learning representations for time series clustering

    Problem: time series clustering TSC - unsupervised learning/ category information is not available. ...

  2. 【论文阅读】A practical algorithm for distributed clustering and outlier detection

    文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...

  3. 论文解读(CGC)《CGC: Contrastive Graph Clustering for Community Detection and Tracking》

    论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, R ...

  4. A Node Influence Based Label Propagation Algorithm for Community detection in networks 文章算法实现的疑问

    这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI ...

  5. LabelRank非重叠社区发现算法介绍及代码实现(A Stabilized Label Propagation Algorithm for Community Detection in Networks)

    最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不 ...

  6. PP: Time series anomaly detection with variational autoencoders

    Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...

  7. [Localization] R-CNN series for Localization and Detection

    CS231n Winter 2016: Lecture 8 : Localization and Detection CS231n Winter 2017: Lecture 11: Detection ...

  8. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  9. 关于目标检测(Object Detection)的文献整理

    本文对CV中目标检测子方向的研究,整理了如下的相关笔记(持续更新中): 1. Cascade R-CNN: Delving into High Quality Object Detection 年份: ...

随机推荐

  1. Exception in thread "main" java.lang.NoClassDefFoundError:org/springframework/beans/factory/config/EmbeddedValueResoler

    参考自:https://www.cnblogs.com/quanbin/p/11100337.html 解决方法:检查发现spring的核心包spring-bean版本和其他核心包版本不同,更改为和其 ...

  2. 康托展开+反向bfs

    康托展开+反向bfs hdu 1043 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1043 #include <iostream> # ...

  3. 网络流最大流——dinic算法

    前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问 ...

  4. ECMAScript基本对象——Global全局对象

    特点: 全局对象,这个Global中封装的方法不需要对象就可以直接调用.直接写  方法名():就可以调用 url编码:浏览器自动转换谷歌浏览器:wd=淘宝IE浏览器:wd=%E6%B7%98%E5%A ...

  5. 吴裕雄--天生自然 R语言开发学习:集成开发环境\工具RStudio的安装与配置

  6. .NET Core 初次上手Swagger

    安装NuGet 程序包=>Swashbuckle.AspNetCore 在  Startup.ConfigureServices  方法里添加注册生成器 //注册Swagger生成器,定义一个和 ...

  7. 关于Apache Tomcat 文件包含漏洞(CVE-2020-1938)威胁整改

    1.昨天收到关于这个漏洞的整改通告(https://mp.weixin.qq.com/s/qIG_z9imxdLUobviSv7knw),考虑到版本升级可能带来其他问题,所以采用如下方式: 2.用的a ...

  8. node种buffer对象数组 深拷贝浅拷贝问题

    node的一个上位机和下位机通信的转发程序,用的是udp转发. 其中在发送的时候会进行一次rc4加密数据 出现问题就在这个加密数据这一块,因为这个是升级包广播发送.提前生成了升级用的广播报文,是一个b ...

  9. win10子系统ubuntu忘记密码解决方案

    准备部署一个rocket.chat 需要安装mongodb 3.6  准备直接在子系统中安装一下,结果忘记ROOT密码了 找了一下子系统重置密码  记录如下 ubuntu config --defau ...

  10. js限制按钮每隔一段时间才能再次点击

    设置属性 disabled 可以限制交互,单击按钮时添加disabled=“disabled”属性,再为按钮添加定时器,一定时间后删除定时器和disabled属性 <!DOCTYPE html& ...