「JSOI2015」地铁线路

传送门

第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) 。

然后,跑一边最短路就可以求出第一问了。

接下来考虑第二问。

我们在最短路图上面跑 \(\text{DP}\) 我们把所有线路按照 \(dis\) 排序,然后用距离为 \(dis - 1\) 的线路来更新。

我们发现如果一条最短路为 \(d\) 的线路上出现了一个最短路为 \(d\) 的点,那么显然我们不会在这里上车,可能在这里下车。

暴力的搞法就是暴力枚举,每次 \(O(n^2)\) 的转移 :\(dp_i \leftarrow dp_j + dis(i, j),dis_i = dis_j + 1\)

但我们发现一条线路是一条链,所以我们只需要每次记一下前缀和后缀的最大值然后再择优,这样就可以 \(O(n)\) 转移了。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <string>
#include <deque>
#include <map>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} const int _ = 5e5 + 5, __ = 2e6 + 5; int tot, head[_]; struct Edge { int v, w, nxt; } edge[__ << 1];
inline void Add_edge(int u, int v, int w) { edge[++tot] = (Edge) { v, w, head[u] }, head[u] = tot; } int n, m, s, t, node, dis[_], dp[_], p[_], pre[_], suf[_];
inline bool cmp(const int& i, const int& j) { return dis[i + n] < dis[j + n]; }
string str;
vector < int > vec[_];
map < string, int > mp;
deque < int > Q;
inline void Dijkstra() {
memset(dis, -1, sizeof dis), dis[s] = 0;
Q.push_back(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop_front();
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if (~dis[v]) continue ;
if (w) dis[v] = dis[u] + w, Q.push_back(v);
else dis[v] = dis[u], Q.push_front(v);
}
}
} inline void calc() {
for (rg int i = 1; i <= m; ++i) p[i] = i;
sort(p + 1, p + m + 1, cmp);
int l, r = 0;
while (r < m && dis[p[r + 1] + n] <= 0) ++r;
for (rg int d = 1; d <= m; ++d) {
l = r + 1;
while (r < m && dis[p[r + 1] + n] == d) ++r;
for (rg int j = l; j <= r; ++j) {
int u = p[j], len = vec[u].size() - 1;
for (rg int k = 0; k <= len + 1; ++k) pre[k] = suf[k] = -2e9;
for (rg int k = 1; k <= len; ++k) {
int v = vec[u][k];
if (dis[v] == d - 1) pre[k] = suf[k] = dp[v];
}
for (rg int k = 1; k <= len; ++k) pre[k] = max(pre[k], pre[k - 1] + 1);
for (rg int k = len; k >= 1; --k) suf[k] = max(suf[k], suf[k + 1] + 1);
for (rg int k = 1; k <= len; ++k) {
int v = vec[u][k];
if (dis[v] == d) dp[v] = max(dp[v], max(pre[k], suf[k]));
}
}
}
} int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(m), read(n);
for (rg int i = 1; i <= n; ++i) cin >> str, mp[str] = ++node;
for (rg int x, i = 1; i <= m; ++i) {
read(x), vec[i].push_back(0);
while (x--) {
cin >> str, vec[i].push_back(mp[str]);
Add_edge(mp[str], i + n, 1), Add_edge(i + n, mp[str], 0);
}
}
cin >> str, s = mp[str];
cin >> str, t = mp[str];
Dijkstra(), calc();
printf("%d\n%d\n", dis[t], dp[t]);
return 0;
}

「JSOI2015」地铁线路的更多相关文章

  1. 「JSOI2015」串分割

    「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...

  2. 「JSOI2015」isomorphism

    「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...

  3. 「JSOI2015」symmetry

    「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...

  4. 「JSOI2015」染色问题

    「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...

  5. 「JSOI2015」圈地

    「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...

  6. 「JSOI2015」最小表示

    「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...

  7. 「JSOI2015」套娃

    「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...

  8. 「JSOI2015」非诚勿扰

    「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...

  9. 「JSOI2015」salesman

    「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是 ...

随机推荐

  1. jdbc url的若干参数

    参数名称 参数说明 缺省值 最低版本要求 user 数据库用户名,用于连接数据库 无 所有版本 password 用户密码(用于连接数据库) 无 所有版本 useUnicode 是否使用Unicode ...

  2. CSS的字体样式

    CSS的字体样式 1. span标签(约定俗成:重要的东西用它括起来) 首选介绍一个约定俗成的东西:span标签.一般将想要突出的东西,比较重要的东西,用span标签括起来. 比如,”学习Java“这 ...

  3. Day1 工厂模式

    我的理解就是:工厂模式可以不用在乎参数的类型,工厂函数根据不同的类型,创建不同的对象.如下(简单工厂): package method.simpleFactory; import java.util. ...

  4. WPF:MVVM模式下ViewModel调用View

    两种基本方法: 消息通知和参数传递 一.消息通知 利用View里的IsEnable属性 原理是这样的: 1.UI中的IsEnabled绑定VM中的属性 2.UI的后台代码中,注册IsEnableCha ...

  5. Java对象构成所有Java应用程序的基础

    通过在优锐课的ange交流下,掌握了很多编程思想方法 特来分享 对象具有状态和行为 Java中的对象以及其他任何``面向对象''语言都是所有Java应用程序的基本组成部分,代表了你可能在你周围找到的任 ...

  6. dp--C - Mysterious Present

    C - Mysterious Present Peter decided to wish happy birthday to his friend from Australia and send hi ...

  7. c数据结构 -- 栈与队列

    栈和队列 ·栈和队列是两种常用的.重要的数据结构 ·栈和队列是限定插入和删除只能在表的“端点”进行的线性表 栈 只能在队尾插入,只能在队尾删除 -- 后进后出 表尾称为栈顶:表头称为栈底 插入元素到栈 ...

  8. codeforces Codeforces Round #597 (Div. 2) B. Restricted RPS 暴力模拟

    #include <bits/stdc++.h> using namespace std; typedef long long ll; ]; ]; int main() { int t; ...

  9. 2019牛客多校第四场A meeting 思维

    meeting 题意 一个树上有若干点上有人,找出一个集合点,使得所有人都到达这个点的时间最短(无碰撞) 思路 就是找树的直径,找直径的时候记得要找有人的点 #include<bits/stdc ...

  10. GitHub网页版基本操作

    创建存储库 登录GitHub进入主页,点击头像左边的加号,创建存储库 填写存储库名称.描述,根据需求设置其他选项.点击“Create repository”按钮 创建分支 打开之前创建好的存储库,点击 ...