今天写一篇关于最小生成树的番外篇,以前写最小生成树总是用的prim,关于kruskal只是知道一些原理,一直也没有时间去学,今天偶然看了一些并查集,才想起了这个算法

会想起刚刚(预)学过的数据结构,来解释一下它的原理:

先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。-------百度百科

通俗一点讲,给定加权无向图G(E,V),将所有边取出只留下点集,然后边按权值从小到大排序后,加入点集中对应该条边原本连接的点的关系,每加入一条边,都要检查加入这条边后是否会与之前加入的边构成环,如果成环,则该边不可取,进行下一条边的的判断,当加入n-1(图有n个顶点)条边后,最小生成树毕.

证明(摘自百度百科):

  1. 这样的步骤保证了选取的每条边都是桥,因此图G构成一个树。
  2. 为什么这一定是最小生成树呢?关键还是步骤3中对边的选取。算法中总共选取了n-1条边,每条边在选取的当时,都是连接两个不同的连通分量的权值最小的边
  3. 要证明这条边一定属于最小生成树,可以用反证法:如果这条边不在最小生成树中,它连接的两个连通分量最终还是要连起来的,通过其他的连法,那么另一种连法与这条边一定构成了环,而环中一定有一条权值大于这条边的边,用这条边将其替换掉,图仍旧保持连通,但总权值减小了。也就是说,如果不选取这条边,最后构成的生成树的总权值一定不会是最小的。

时间复杂度:(eloge)e为边数,这里一定要分清.

#include <bits/stdc++.h>
using namespace std;
struct node{
int x;
int y;
int w;
}e[];
int f[];
int n,m,total;
bool camp(node a,node b)//sort()重载函数
{
return a.w<b.w;
}
int find(int x)//并查
{
if(f[x]==x)
{
return x;
}
else
{
f[x]=find(f[x]);
return f[x];
}
}
int kruskal()
{
for(int i=;i<=m;i++)
{
int u=find(e[i].x);
int v=find(e[i].y);
if(u!=v)//如果不在一个集合中
{
total+=e[i].w;
f[u]=v;
n--;
if(n==)//加够了n-1条边
break;
}
}
return total;
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
e[i].x=x;
e[i].y=y;
e[i].w=z;
}
sort(e+,e+m+,camp);
kruskal();
if(n==)
cout<<total<<endl;
else//不能构成最小生成树
cout<<"orz"<<endl;
return ;
}

最小生成树(一)kruskal的更多相关文章

  1. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  2. 最小生成树之Kruskal

    模板题,学习一下最小生成树的Kruskal算法 对于一个连通网(连通带权图,假定每条边上的权均为大于零的实数)来说,每棵树的权(即树中所有边的权值总和)也可能不同 具有权最小的生成树称为最小生成树 生 ...

  3. ZOJ 1203 Swordfish 旗鱼 最小生成树,Kruskal算法

    主题链接:problemId=203" target="_blank">ZOJ 1203 Swordfish 旗鱼 Swordfish Time Limit: 2 ...

  4. 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  5. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  6. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  7. HDU 1598 find the most comfortable road(最小生成树之Kruskal)

    题目链接: 传送门 find the most comfortable road Time Limit: 1000MS     Memory Limit: 32768 K Description XX ...

  8. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  9. 数据结构学习笔记05图(最小生成树 Prim Kruskal)

    最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路   |V|个顶 ...

  10. HDU1875——畅通工程再续(最小生成树:Kruskal算法)

    畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...

随机推荐

  1. 反射 API基本代码测试

    ReflectBean.java package com.xiaojian.basics.reflect; /** * 使用反射的测试类 */ public class ReflectBean { / ...

  2. windows下使用cmd命令杀死进程

    tasklist 使用以上命令显示当前进程,及其PID等,如图所示 找到我要删除的进程的pid(好像有点费劲?) 出现以下提示 原因:没有管理员权限,使用管理员模式打开 在Windows菜单栏中找到命 ...

  3. CentOS7设置静态IP以及windows下ping不通虚拟机、虚拟机ping不通外网解决方案

    问题:CentOS7安装完成后默认使用的是动态IP,当你每次重新启动CentOS7后,它的IP地址都不一样.一般我们都是使用远程连接工具连接CentOS7进行操作,如果每次IP都不一样,系统启动后,每 ...

  4. C++Primer第五版 3.2.3节练习

    练习 3.6:编写一段程序,使用范围for语句将字符串内的所有字符用X代替. #include<iostream> #include<string> using namespa ...

  5. 原生js面向对象编程-选项卡(点击)

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  6. JS怎样做四舍五入

    1 .tofixed方法 toFixed() 方法可把 Number 四舍五入为指定小数位数的数字.例如将数据Num保留2位小数,则表示为:toFixed(Num):但是其四舍五入的规则与数学中的规则 ...

  7. 1z0-062 题库解析3

    The hr user executes the following query on the employees table but does not issue commit, rollback, ...

  8. Java set接口之HashSet集合原理讲解

    Set接口 java.util.set接口继承自Collection接口,它与Collection接口中的方法基本一致, 并没有对 Collection接口进行功能上的扩充,只是比collection ...

  9. Docker学习(九)Volumn容器间共享数据

    Docker学习(九)Volumn容器间共享数据 volume是什么 volume在英文中是容量的意思, 在docker中是数据卷的意思,是用来保存数据的容器 为什么要进行数据共享 在集群中有多台to ...

  10. Go的http包中默认路由匹配规则

    # 一.执行流程 首先我们构建一个简单http server: ```go package main import ( "log" "net/http" ) f ...