今天写一篇关于最小生成树的番外篇,以前写最小生成树总是用的prim,关于kruskal只是知道一些原理,一直也没有时间去学,今天偶然看了一些并查集,才想起了这个算法

会想起刚刚(预)学过的数据结构,来解释一下它的原理:

先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。-------百度百科

通俗一点讲,给定加权无向图G(E,V),将所有边取出只留下点集,然后边按权值从小到大排序后,加入点集中对应该条边原本连接的点的关系,每加入一条边,都要检查加入这条边后是否会与之前加入的边构成环,如果成环,则该边不可取,进行下一条边的的判断,当加入n-1(图有n个顶点)条边后,最小生成树毕.

证明(摘自百度百科):

  1. 这样的步骤保证了选取的每条边都是桥,因此图G构成一个树。
  2. 为什么这一定是最小生成树呢?关键还是步骤3中对边的选取。算法中总共选取了n-1条边,每条边在选取的当时,都是连接两个不同的连通分量的权值最小的边
  3. 要证明这条边一定属于最小生成树,可以用反证法:如果这条边不在最小生成树中,它连接的两个连通分量最终还是要连起来的,通过其他的连法,那么另一种连法与这条边一定构成了环,而环中一定有一条权值大于这条边的边,用这条边将其替换掉,图仍旧保持连通,但总权值减小了。也就是说,如果不选取这条边,最后构成的生成树的总权值一定不会是最小的。

时间复杂度:(eloge)e为边数,这里一定要分清.

#include <bits/stdc++.h>
using namespace std;
struct node{
int x;
int y;
int w;
}e[];
int f[];
int n,m,total;
bool camp(node a,node b)//sort()重载函数
{
return a.w<b.w;
}
int find(int x)//并查
{
if(f[x]==x)
{
return x;
}
else
{
f[x]=find(f[x]);
return f[x];
}
}
int kruskal()
{
for(int i=;i<=m;i++)
{
int u=find(e[i].x);
int v=find(e[i].y);
if(u!=v)//如果不在一个集合中
{
total+=e[i].w;
f[u]=v;
n--;
if(n==)//加够了n-1条边
break;
}
}
return total;
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
e[i].x=x;
e[i].y=y;
e[i].w=z;
}
sort(e+,e+m+,camp);
kruskal();
if(n==)
cout<<total<<endl;
else//不能构成最小生成树
cout<<"orz"<<endl;
return ;
}

最小生成树(一)kruskal的更多相关文章

  1. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  2. 最小生成树之Kruskal

    模板题,学习一下最小生成树的Kruskal算法 对于一个连通网(连通带权图,假定每条边上的权均为大于零的实数)来说,每棵树的权(即树中所有边的权值总和)也可能不同 具有权最小的生成树称为最小生成树 生 ...

  3. ZOJ 1203 Swordfish 旗鱼 最小生成树,Kruskal算法

    主题链接:problemId=203" target="_blank">ZOJ 1203 Swordfish 旗鱼 Swordfish Time Limit: 2 ...

  4. 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  5. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  6. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  7. HDU 1598 find the most comfortable road(最小生成树之Kruskal)

    题目链接: 传送门 find the most comfortable road Time Limit: 1000MS     Memory Limit: 32768 K Description XX ...

  8. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  9. 数据结构学习笔记05图(最小生成树 Prim Kruskal)

    最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路   |V|个顶 ...

  10. HDU1875——畅通工程再续(最小生成树:Kruskal算法)

    畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...

随机推荐

  1. 「模拟赛 2018-11-02」T3 老大 解题报告

    老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图),由于新建的办公室太大以 ...

  2. .NET BS端和CS端相互压缩发送接收byte对象数据方法

    本文是总结实际项目经验,代码不少是学习别人整合的,效果稳定可靠,有很大参考价值:但是也有不全面的地方,朋友们拿到可以按照自己需要修改. 场景是项目需要在客户端控制台软件和.NET MVC站点间互相传递 ...

  3. 15.Python文本转化语音方法

    1.用pywin32模块来将文本转化为语音 通过pip install pywin32安装模块,pywin32是个万金油的模块,太多的场景使用到它,但在文本转语音上,它却是个青铜玩家,简单无脑但效果不 ...

  4. Linux Cgroup浅析

    cgroup从2.6.4引入linux内核主线,目前默认已启用该特性.在cgroup出现之前,只能对一个进程做资源限制,比如通过sched_setaffinity设置进程cpu亲和性,使用ulimit ...

  5. Python学习中的“按位取反”笔记总结

    | 疑惑 最近在学习Python的过程中了解到位运算符,但对于按位取反有点迷糊,就比如说~9(按位取反)之后的结果是-10,为什么不是6呢?所以下面就来看看为什么不是6,正确结果是如何计算出来的呢? ...

  6. 在IIS上发布netcore项目

    保证电脑上有.net core sdk或者.net core runtime; 需要安装AspNetCoreModule托管模块:DotNetCore.2.0.5-WindowsHosting.exe ...

  7. Ubuntu 19.10 安装 jupyter

    安装pip3 ubuntu 19.10 已经没有python了,取代的是python3. 执行sudo apt install python3-pip安装pip3 安装jupyter 执行sudo p ...

  8. 动态内存分配(C++)

    C++中的动态内存分配 C++中通过new关键字进行动态内存分配 C++中的动态内存申请是基于类型进行的 delet关键字用于内存释放 //变量申请 Type*pointer = new Type; ...

  9. 解决a 标签 和 div 标签高度超出的问题

    当a,或div标签里面有内容时,有时候a 或div的高度会超出,此时可以设置a或div的font-size:0:

  10. git与github的简单使用教程

    git与github的简单使用教程 一.创建仓库 点击new,进入创建仓库页面 对将要创建的仓库进行一些简单的设置 最后再点击create repository就可以了. 到这我们就创建好了一个仓库. ...