题目就是求多变形内部一点。 使得到任意边距离中的最小值最大。

那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中。

那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离。

求半平面交看是否存在解即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <map>
#include <sstream>
#include <queue>
#include <vector>
#define MAXN 111111
#define MAXM 211111
#define PI acos(-1.0)
#define eps 1e-8
#define INF 1000000001
using namespace std;
int dblcmp(double d)
{
if (fabs(d) < eps) return 0;
return d > eps ? 1 : -1;
}
struct point
{
double x, y;
point(){}
point(double _x, double _y):
x(_x), y(_y){};
void input()
{
scanf("%lf%lf",&x, &y);
}
double dot(point p)
{
return x * p.x + y * p.y;
}
double distance(point p)
{
return hypot(x - p.x, y - p.y);
}
point sub(point p)
{
return point(x - p.x, y - p.y);
}
double det(point p)
{
return x * p.y - y * p.x;
}
bool operator == (point a)const
{
return dblcmp(a.x - x) == 0 && dblcmp(a.y - y) == 0;
}
bool operator < (point a)const
{
return dblcmp(a.x - x) == 0 ? dblcmp(y - a.y) < 0 : x < a.x;
} }p[MAXN];
struct line
{
point a,b;
line(){}
line(point _a,point _b)
{
a=_a;
b=_b;
}
bool parallel(line v)
{
return dblcmp(b.sub(a).det(v.b.sub(v.a))) == 0;
}
point crosspoint(line v)
{
double a1 = v.b.sub(v.a).det(a.sub(v.a));
double a2 = v.b.sub(v.a).det(b.sub(v.a));
return point((a.x * a2 - b.x * a1) / (a2 - a1), (a.y * a2 - b.y * a1) / (a2 - a1));
}
bool operator == (line v)const
{
return (a == v.a) && (b == v.b);
}
};
struct halfplane:public line
{
double angle;
halfplane(){}
//表示向量 a->b逆时针(左侧)的半平面
halfplane(point _a, point _b)
{
a = _a;
b = _b;
}
halfplane(line v)
{
a = v.a;
b = v.b;
}
void calcangle()
{
angle = atan2(b.y - a.y, b.x - a.x);
}
bool operator <(const halfplane &b)const
{
return angle < b.angle;
}
};
struct polygon
{
int n;
point p[MAXN];
line l[MAXN];
double area;
void getline()
{
for (int i = 0; i < n; i++)
{
l[i] = line(p[i], p[(i + 1) % n]);
}
}
void getarea()
{
area = 0;
int a = 1, b = 2;
while(b <= n - 1)
{
area += p[a].sub(p[0]).det(p[b].sub(p[0]));
a++;
b++;
}
area = fabs(area) / 2;
}
}convex;
struct halfplanes
{
int n;
halfplane hp[MAXN];
point p[MAXN];
int que[MAXN];
int st, ed;
void push(halfplane tmp)
{
hp[n++] = tmp;
}
void unique()
{
int m = 1, i;
for (i = 1; i < n;i++)
{
if (dblcmp(hp[i].angle - hp[i - 1].angle))hp[m++] = hp[i];
else if (dblcmp(hp[m - 1].b.sub(hp[m - 1].a).det(hp[i].a.sub(hp[m - 1].a)) > 0))hp[m - 1] = hp[i];
}
n = m;
}
bool halfplaneinsert()
{
int i;
for (i = 0; i < n; i++) hp[i].calcangle();
sort(hp, hp + n);
unique();
que[st = 0] = 0;
que[ed = 1] = 1;
p[1] = hp[0].crosspoint(hp[1]);
for (i = 2; i < n; i++)
{
while (st < ed && dblcmp((hp[i].b.sub(hp[i].a).det(p[ed].sub(hp[i].a)))) < 0) ed--;
while (st < ed && dblcmp((hp[i].b.sub(hp[i].a).det(p[st + 1].sub(hp[i].a)))) < 0) st++;
que[++ed] = i;
if (hp[i].parallel(hp[que[ed - 1]])) return false;
p[ed] = hp[i].crosspoint(hp[que[ed - 1]]);
}
while (st < ed && dblcmp(hp[que[st]].b.sub(hp[que[st]].a).det(p[ed].sub(hp[que[st]].a))) < 0) ed--;
while (st < ed && dblcmp(hp[que[ed]].b.sub(hp[que[ed]].a).det(p[st + 1].sub(hp[que[ed]].a))) < 0) st++;
if (st + 1 >= ed)return false;
return true;
}
void getconvex(polygon &con)
{
p[st] = hp[que[st]].crosspoint(hp[que[ed]]);
con.n = ed - st + 1;
int j = st, i = 0;
for (; j <= ed; i++, j++)
{
con.p[i] = p[j];
}
}
}h;
int T;
int n;
line getmove(point a, point b, double mid)
{
double x = a.x - b.x;
double y = a.y - b.y;
double L = a.distance(b);
point ta = point(mid * y / L + a.x, a.y - mid * x / L);
point tb = point(mid * y / L + b.x, b.y - mid * x / L);
return line(ta, tb);
}
bool check(double mid)
{
h.n = 0;
for(int i = 0; i < n; i++)
{
line tmp = getmove(p[i], p[(i + 1) % n], mid);
h.push(halfplane(tmp));
}
return h.halfplaneinsert();
}
int main()
{
int cas = 0;
while(scanf("%d", &n) != EOF && n)
{
for(int i = 0; i < n; i++) p[i].input();
double low = 0, high = INF;
for(int i = 0; i < 100; i++)
{
double mid = (low + high) / 2;
if(check(mid)) low = mid;
else high = mid;
}
printf("%.6f\n", low);
}
return 0;
}

POJ 3525 Most Distant Point from the Sea 二分+半平面交的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  2. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  6. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  7. poj 3335 Rotating Scoreboard - 半平面交

    /* poj 3335 Rotating Scoreboard - 半平面交 点是顺时针给出的 */ #include <stdio.h> #include<math.h> c ...

  8. poj 3384 半平面交

    Feng Shui Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5183   Accepted: 1548   Speci ...

  9. POJ 2540 Hotter Colder --半平面交

    题意: 一个(0,0)到(10,10)的矩形,目标点不定,从(0,0)开始走,如果走到新一点是"Hotter",那么意思是离目标点近了,如果是"Colder“,那么就是远 ...

随机推荐

  1. HDU5420 : Victor and Proposition

    以深度建立线段树,线段树父亲节点向儿子节点连边,然后用线段树合并可以得到任何一个点子树的线段树,只需向对应节点的线段树中的$O(\log n)$个点连边即可.为了保证连边关系不发生混乱,线段树需要进行 ...

  2. Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树

    F. st-Spanning Tree 题目连接: http://codeforces.com/contest/723/problem/F Description You are given an u ...

  3. MongoDB+MongoVUE安装及入门

    前言及概念 据说nodejs和mongoDB是一对好基友,于是就忍不住去学习了解了一下MongoDB相关的一些东西, 那么,MongoDB是什么?这里的五件事是每个开放人员应该知道的: MongoDB ...

  4. Linux进程管理工具 Supervisord 的安装 及 入门教程

    Supervisor是一个进程管理工具,官方的说法: 用途就是有一个进程需要每时每刻不断的跑,但是这个进程又有可能由于各种原因有可能中断.当进程中断的时候我希望能自动重新启动它,此时,我就需要使用到了 ...

  5. 自定义两行可左右滑动的GridView

    效果图: xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:an ...

  6. JBPM使用方法、过程记录

    一.How to call Web Service Using JBPM 5, designer https://204.12.228.236/browse.php?u=ObFK10b3HDFCQUN ...

  7. 让AngularJS的controllers之间共享数据

    如何让controller之间共享数据呢?大致是让不同controller中的变量指向同一个实例. 通过service创建一个存放共享数据的对象. .service("greeting&qu ...

  8. Delphi XE2 compiler performance

    原文: http://blog.barrkel.com/2011/10/delphi-xe2-compiler-performance.html Delphi XE2 compiler perform ...

  9. C#编程(六十四)----------并行扩展

    并行的扩展 扩展1. Parallel的使用: 在Parallel下面有三个常用的方法Invoke,For,ForEach Parallel.Invoke()方法是最简单,最简洁的将串行的代码并行化. ...

  10. Android 4.4 Kitkat Phone工作流程浅析(八)__Phone状态分析

    本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象.与Google原生AOSP有些许差异.请读者知悉. ...