Given a string, we need to find the total number of its distinct substrings.

Input

T- number of test cases. T<=20; Each test case consists of one string, whose length is <= 50000

Output

For each test case output one number saying the number of distinct substrings.

Example

Input:
2
CCCCC
ABABA Output:
5
9

题目大意:给一个字符串,问这个字符串中不同的子串一共有多少个。

思路:构建后缀数组。如样例ABABA的5个后缀排序后分别为:

A

ABA

ABABA

BA

BABA

我们可以看作所有后缀的所有前缀构成所有的子串。

从上面可以看出,在A中,A第一次出现。在ABA中,AB和ABA第一次出现。在ABABA中,ABAB和ABABA第一次出现。

那么容易看出,对于一个suffix(sa[i]),其中有height[i]个子串是和前一个重复了的。其他都没有和前一个重复,而且他们都不会和之前所有的子串重复(因为如果前面有和suffix(sa[i])的前缀子串重复的次数比suffix(sa[i-1])要多的话,它应该在suffix(sa[i])和suffix(sa[i-1])之间,这显然不符合后缀数组的性质)

所以求出height[]数组后,总的子串数为n*(n+1)/2,那么答案就为n*(n+1)/2 - sum{height[]}

代码(705:0.75S)

 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL; const int MAXN = ; int sa[MAXN], c[MAXN], rank[MAXN], height[MAXN], tmp[MAXN];
char s[MAXN];
int T, n; void makesa(int m) {
memset(c, , m * sizeof(int));
for(int i = ; i < n; ++i) ++c[rank[i] = s[i]];
for(int i = ; i < m; ++i) c[i] += c[i - ];
for(int i = ; i < n; ++i) sa[--c[rank[i]]] = i;
for(int k = ; k < n; k <<= ) {
for(int i = ; i < n; ++i) {
int j = sa[i] - k;
if(j < ) j += n;
tmp[c[rank[j]]++] = j;
}
int j = c[] = sa[tmp[]] = ;
for(int i = ; i < n; ++i) {
if(rank[tmp[i]] != rank[tmp[i - ]] || rank[tmp[i] + k] != rank[tmp[i - ] + k])
c[++j] = i;
sa[tmp[i]] = j;
}
memcpy(rank, sa, n * sizeof(int));
memcpy(sa, tmp, n * sizeof(int));
}
} void calheight() {
for(int i = , k = ; i < n; height[rank[i++]] = k) {
if(k > ) --k;
int j = sa[rank[i] - ];
while(s[i + k] == s[j + k]) ++k;
}
} LL solve() {
LL ret = LL(n) * (n - ) / ;
for(int i = ; i < n; ++i) ret -= height[i];
return ret;
} int main() {
scanf("%d", &T);
while(T--) {
scanf("%s", s);
n = strlen(s) + ;
makesa();
calheight();
printf("%lld\n", solve());
}
}

SPOJ 694 Distinct Substrings/SPOJ 705 New Distinct Substrings(后缀数组)的更多相关文章

  1. SPOJ 694. Distinct Substrings (后缀数组不相同的子串的个数)转

    694. Distinct Substrings Problem code: DISUBSTR   Given a string, we need to find the total number o ...

  2. 705. New Distinct Substrings spoj(后缀数组求所有不同子串)

    705. New Distinct Substrings Problem code: SUBST1 Given a string, we need to find the total number o ...

  3. SPOJ 694&&SPOJ705: Distinct Substrings

    DISUBSTR - Distinct Substrings 链接 题意: 询问有多少不同的子串. 思路: 后缀数组或者SAM. 首先求出后缀数组,然后从对于一个后缀,它有n-sa[i]-1个前缀,其 ...

  4. SPOJ 705 Distinct Substrings(后缀数组)

    [题目链接] http://www.spoj.com/problems/SUBST1/ [题目大意] 给出一个串,求出不相同的子串的个数. [题解] 对原串做一遍后缀数组,按照后缀的名次进行遍历, 每 ...

  5. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  6. SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)

    DISUBSTR - Distinct Substrings no tags  Given a string, we need to find the total number of its dist ...

  7. Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)

    Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...

  8. 后缀数组:SPOJ SUBST1 - New Distinct Substrings

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  9. spoj - Distinct Substrings(后缀数组)

    Distinct Substrings 题意 求一个字符串有多少个不同的子串. 分析 又一次体现了后缀数组的强大. 因为对于任意子串,一定是这个字符串的某个后缀的前缀. 我们直接去遍历排好序后的后缀字 ...

随机推荐

  1. WPF几个样式

    其实也是大家学的最多的,网上的. 1.老版360 2.360悬浮窗 不好意思,没有找到悬浮球的图片,随便一个代替了 3.老版迅雷 4.新版360 遗憾的是这个样式没有完整的源代码.只是一个演示和图片代 ...

  2. Vue--- 一点车项目 连接数据库

    Vue--- 一点车项目  连接数据库 创建连接数据库配置 ###导入 const Koa = require('koa'); const Router = require('koa-router') ...

  3. 深入理解bit_or和bit_and,bit_count

    bit_or:二进制数按位或,bit_and:二进制数按位与,bit_count:统计二进制数1个个数 下面以一个例子来说明用法:示例要实现的功能就是计算每月有几天有访问,先把示例摘录在这里.1234 ...

  4. Linux上搭建svn资源库

    一.安装 centos上安装 使用命令svn  --version查看是否安装过svn: 如果出现  bash: svn: command not found  则显示没有安装 可以使用 yum in ...

  5. IPV6路由技术

    OSPFV3 一.OSPFv3概述:协议号89 1.概念: OSPFv3是ospf(开放式最短路径优先)版本3的简称,主要提供对IPV6的支持,遵循的标准为RFC2740(OSPF for IPv6) ...

  6. golang 并发执行函数func类型slice

    golang的slice支持func.使用func slice要注意func要完整描述入参出参. 如果需要执行一系列类型相同(入参出参格式相同)的函数,可以动态添加到一个slice里面.range s ...

  7. LeetCode二叉树实现

    LeetCode二叉树实现 # 定义二叉树 class TreeNode: def __init__(self, x): self.val = x self.left = None self.righ ...

  8. 【8086汇编-Day7】关于多个段的程序的实验

    实验一 实验二 实验三 实验四 实验五 实验六 总结 在集成环境下,内存从0770段开始按照段的先后顺序和内容多少分配,并且分配的都是16的倍数 关于实际占用的空间公式的话其实极容易想到(假设有N个字 ...

  9. 20145234黄斐《信息安全系统设计基础》第八周(Linux下vim相关命令)

    Linux下vim相关命令 在编辑程序时经常使用vim,所以记住一些常用的指令还是很有必要的 文件命令 vim file 打开单个文件vim file vim file1 file2 file3 .. ...

  10. 蓝牙入门知识-CC2541知识

    蓝牙是为了能够通信,想要通信就必须遵守一定的规则, Profile 就可以理解为相互约定的规则,因为每个协议栈demo 都会有一个Profile 与之对应, 我们这里的SimpleBLExxx 对应的 ...