51Nod 1014 X^2 Mod P

注意潜在范围 x*x用long long
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
#define INF 1e18+100
#define N 1000010
typedef long long LL;
int arr[N];
int main()
{
int a,p;
while(~scanf("%d%d",&p,&a)){
int cnt=;
for(int i=;i<=p;i++){
if((LL)i*i%p==a){
arr[cnt++]=i;
}
}
if(cnt==){
puts("No Solution");
continue;
}
sort(arr,arr+cnt);
printf("%d",arr[]);
for(int i=;i<cnt;i++){
printf(" %d",arr[i]);
}
puts("");
}
return ;
}
51Nod 1014 X^2 Mod P的更多相关文章
- 1007 正整数分组 1010 只包含因子2 3 5的数 1014 X^2 Mod P 1024 矩阵中不重复的元素 1031 骨牌覆盖
1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. Input 第1行:一个 ...
- 51Nod 1046 A^B Mod C(日常复习快速幂)
1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...
- 51nod 1421:最大MOD值
1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...
- 51Nod 1046 A^B Mod C Label:快速幂
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...
- 计算幂 51Nod 1046 A^B Mod C
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...
- 51NOD 1046 A^B Mod C
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) ...
- (快速幂)51NOD 1046 A^B Mod C
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...
- 数论ex
数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p, ...
- 51Nod 1004 n^n的末位数字(日常复习快速幂,莫名的有毒,卡mod值)
1004 n^n的末位数字 题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出 ...
随机推荐
- node包管理相关
切换npm数据源 镜像使用方法(三种办法任意一种都能解决问题,建议使用第三种,将配置写死,下次用的时候配置还在): 1.通过config命令 npm config set registry https ...
- su和sudo的使用
用于用户身份切换 一.su 命令形式 代表内容 su 切换为root,以non-login shell的方式 su - 切换为root,以login shell的方式 su -l 账号 切换为“账号” ...
- Thunder团队——文案+美工
团队名称:Thunder 组长:王航 成员:李传康.代秋彤.邹双黛.苗威.宋雨.胡佑蓉.杨梓瑞 项目名称:爱阅app 需求概述: 现在市面上有很多手机阅读器,但是基本上不是收费就是广告满天飞.基于这种 ...
- ueditor百度编辑器的赋值方法
示例: http://ueditor.baidu.com/website/onlinedemo.html 引用代码: window.UMEDITOR_HOME_URL = $CONFIG['domai ...
- Java微笔记(4)
Java 中的内部类 内部类( Inner Class )就是定义在另外一个类里面的类.与之对应,包含内部类的类被称为外部类 内部类的主要作用如下: 内部类提供了更好的封装,可以把内部类隐藏在外部类之 ...
- Python 零碎信息-基础 02
1. range xrange 的差别 1.1 range 返回列表对象. 1.2 xrange 返回xrange对象 不需要返回列表里面的值, 节省内存. >>> range(1 ...
- Winform 子窗体设置刷新父窗体
方法1:所有权法 父窗体:Form1 子窗体:Form2 //Form1:窗体代码 //需要有一个公共的刷新方法 public void Refresh_Method() { //... } / ...
- 转 linux安装swoole扩展
linux安装swoole扩展 发表于2年前(2014-09-03 14:05) 阅读(4404) | 评论(3) 7人收藏此文章, 我要收藏 赞2 上海源创会5月15日与你相约[玫瑰里],赶快来 ...
- QT分析之网络编程
原文地址:http://blog.163.com/net_worm/blog/static/127702419201002842553382/ 首先对Windows下的网络编程总结一下: 如果是服务器 ...
- 【转】log4j.properties文件的配置
一.前言 log4j使用的还是比较多的,但是对于其配置又很难描述清楚要怎么配置,说明我自己对于log4j的配置并不是非常熟悉,所以在网上找了一篇详尽的 博文转载,在此非常感谢原文作者的辛苦付出,如有需 ...