注意潜在范围 x*x用long long

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
#define INF 1e18+100
#define N 1000010
typedef long long LL;
int arr[N];
int main()
{
int a,p;
while(~scanf("%d%d",&p,&a)){
int cnt=;
for(int i=;i<=p;i++){
if((LL)i*i%p==a){
arr[cnt++]=i;
}
}
if(cnt==){
puts("No Solution");
continue;
}
sort(arr,arr+cnt);
printf("%d",arr[]);
for(int i=;i<cnt;i++){
printf(" %d",arr[i]);
}
puts("");
}
return ;
}

51Nod 1014 X^2 Mod P的更多相关文章

  1. 1007 正整数分组 1010 只包含因子2 3 5的数 1014 X^2 Mod P 1024 矩阵中不重复的元素 1031 骨牌覆盖

    1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的.   Input 第1行:一个 ...

  2. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  3. 51nod 1421:最大MOD值

    1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...

  4. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  5. 计算幂 51Nod 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  6. 51NOD 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) ...

  7. (快速幂)51NOD 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  8. 数论ex

    数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p, ...

  9. 51Nod 1004 n^n的末位数字(日常复习快速幂,莫名的有毒,卡mod值)

    1004 n^n的末位数字 题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出 ...

随机推荐

  1. 2018-8-29安装Jitamin过程实录

    2018-8-29安装Jitamin过程实录 新建 模板 小书匠 欢迎走进zozo的学习之旅. 简介 安装 nginx + php + mysql 安装composer 安装Jitamin 简介 在考 ...

  2. Thunder——基于NABCD评价“欢迎来怼”团队作品

    基于NABCD N——need需求 对于开设了软件工程课并且正在进行教学活动的老师和同学,除了在写作业时会打开电脑进行操作,平时我们更希望可以通过一些简单方便的方法来查看有关作业的内容,比如查看一下老 ...

  3. About Dynamic Programming

    Main Point: Dynamic Programming = Divide + Remember + Guess 1. Divide the key is to find the subprob ...

  4. 第一届"进化论杯"月赛 解题报告

    Problem A: derivative 思路:水题.算出二阶导数,直接 printf 结果. 在求出二阶导数后可以不立刻化简,此时式中带有大量 e^(-x) 项.此时直接可以代入 ln|x0|,把 ...

  5. Swift-创建UIButton(其他UI组件雷同)

    let button = UIButton.init(frame: CGRectMake(, , , )) button.setTitle("按钮", forState: UICo ...

  6. centos升级python(从2.6.6升级到2.7.8)

    ***先安装readline,否则升级后python回退和方向键不能使用 yum install readline-devel.x86_64   1.#wget www.python.org/ftp/ ...

  7. centos设置时间同步

    1.安装ntpdate #yum install ntpdate   2. #cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime #ntpdate ...

  8. input 输入框不能点 readonly , disabled

    只读 readonly="readonly" 不可用 disabled="disabled" 背景变 灰色

  9. 新jQuery中attr 与 prop的不同

    使用最新版本jquery,在对checkbox操作时发现 attr属性全选,反选等不起作用,后查发现新版本对标签属性的设置发生了变化. 在高版本的jquery引入prop方法后,什么时候该用prop? ...

  10. POJ3041:Asteroids——题解

    http://poj.org/problem?id=3041 题目大意:激光可以干掉一整行或一整列陨石,求最少激光次数. —————————————————— 二分图匹配,对于每一个陨石将它的横纵坐标 ...