Codeforces 550D —— Regular Bridge——————【构造】
2 seconds
256 megabytes
standard input
standard output
An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.
Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.
The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.
Print "NO" (without quotes), if such graph doesn't exist.
Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.
The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.
Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ n, a ≠ b), that mean that there is an edge connecting the verticesa and b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.
The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).
1
YES
2 1
1 2
In the sample from the statement there is a suitable graph consisting of two vertices, connected by a single edge.
题目大意:给你一个k。让你构造一个无向图,最少有一条桥,保证这个图中的所有顶点的度都为k。如果有这样的图,输出顶点数和边数,同时还有所有边的端点。
解题思路:首先我们证明k不能是偶数,假设结点u和v关于一条桥邻接,那么如果去掉该桥后,对于包含u结点的连通分量来说,只有u结点是奇数,那么这与连通分量中所有结点的度的和为偶数相矛盾,得证k只能为奇数。
讨论k为奇数:我们假定结点1是由桥所连接的结点,那么想让1结点度数为k,那么就要有k-1个结点与1邻接,我们假设是2->k,这k-1个结点就算是行成完全图也不能保证度数为k,所以需要加一个结点k+1,让k+1先与2->k这k-1个结点相连,但是k+1结点的度才为k-1,所以我们仍然需要加结点k+2,让k+2也与2->k都连接,同时让k+1与k+2连接。保证了k+1和k+2度都为k。但是这时候2->k这k-1个结点度数都才为3。如果让2->k这k-1个结点行成完全图,那么每个结点会增加k-2个度,但是现在需要每个结点增加k-3个度,所以需要每个结点减少1个度。我们可以假设删去2 -> 3, 4 -> 5,6->7.....这些边。到这里我们的构造算法已经结束了。
构造算法为:让1、k+1、k+2跟2->k这k-1个结点邻接,同时让2->k这k-1个结点形成完全图,但是删除env->env+1,env为2->k中所有偶数。同时桥所连接的那一边是对称的处理。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
int main() {
int k;
scanf ( "%d", &k );
if ( k == 1 ) {
puts ("YES\n2 1\n1 2");
}else if ( k % 2 == 0 ) {
puts ( "NO" );
}else {
puts ( "YES" );
printf ( "%d %d\n", 2*k + 4, k*(k+2) );
for ( int i = 2; i <= k; i++ ) {
printf ( "1 %d\n", i );
}
int nn = k + 2;
for ( int i = 2; i <= k; i++ ) {
printf("%d %d\n",i, k+1);
printf("%d %d\n",i, k+2);
for ( int j = i + 1; j <= k; j++ ) {
if(i%2 == 0 && j == i+1) continue;
printf ( "%d %d\n", i, j );
}
}
printf ( "%d %d\n", k + 1, k + 2 ); for ( int i = 2; i <= k; i++ ) {
printf ( "%d %d\n", 1 + nn, i + nn );
}
for ( int i = 2; i <= k; i++ ) {
printf("%d %d\n",i+nn, nn+k+1);
printf("%d %d\n",i+nn, nn+k+2);
for ( int j = i + 1; j <= k; j++ ) {
if(i%2 == 0 && j == i+1) continue;
printf ( "%d %d\n", i + nn, j + nn );
}
}
printf ( "%d %d\n", k + 1 + nn, k + 2 + nn );
printf ( "%d %d\n", 1, nn + 1 );
}
return 0;
}
Codeforces 550D —— Regular Bridge——————【构造】的更多相关文章
- codeforces #550D Regular Bridge 构造
题目大意:给定k(1≤k≤100),要求构造一张简单无向连通图,使得存在一个桥,且每一个点的度数都为k k为偶数时无解 证明: 将这个图缩边双,能够得到一棵树 那么一定存在一个叶节点,仅仅连接一条桥边 ...
- Codeforces Round #306 (Div. 2) D. Regular Bridge 构造
D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...
- cf550D. Regular Bridge(构造)
题意 给出一个$k$,构造一个无向图,使得每个点的度数为$k$,且存在一个桥 Sol 神仙题 一篇写的非常好的博客:http://www.cnblogs.com/mangoyang/p/9302269 ...
- Codeforces 550 D. Regular Bridge
\(>Codeforces \space 550 D. Regular Bridge<\) 题目大意 :给出 \(k\) ,让你构造出一张点和边都不超过 \(10^6\) 的无向图,使得每 ...
- cf550D Regular Bridge
Regular Bridge An undirected graph is called k-regular, if the degrees of all its vertices are equal ...
- cf#306D. Regular Bridge(图论,构图)
D. Regular Bridge time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- D. Regular Bridge 解析(思維、圖論)
Codeforce 550 D. Regular Bridge 解析(思維.圖論) 今天我們來看看CF550D 題目連結 題目 給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每 ...
- 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)
题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...
- Codeforces 1383D - Rearrange(构造)
Codeforces 题面传送门 & 洛谷题面传送门 一道不算困难的构造,花了一节英语课把它搞出来了,题解简单写写吧( 考虑从大往小加数,显然第三个条件可以被翻译为,每次加入一个元素,如果它所 ...
随机推荐
- 《html5 从入门到精通》读书笔记(二)
接着上面继续记录笔记,这次要记的知识点比较多...记录下我认为比较重要的东西. 一.表单属性 1.autocomplete属性 该属性规定form或input域应该拥有自动完成功能. <form ...
- Service Worker 缓存文件处理
交代背景 前段时间升级了一波Google Chrome,发现我的JulyNovel站点Ctrl+F5也刷新不了,后来发现是新的Chrome已经支持Service Worker,而我的JulyNovel ...
- 冒泡排序算法 :BubbleSort
java中的经典算法:冒泡排序算法 $. 可以理解成当你静止一杯可乐时,里面的CO2随着你的静止,由于不不易溶于水的性质, 且会以气泡的形式逐渐向上漂浮.越大的气泡上浮速度越快. 冒泡排序算法的原理于 ...
- 算法 UVA 11292
***从今天开始自学算法. ***代码是用c++,所以顺便再自学一下c++ 例题1 勇者斗恶龙(The Dragon of Loowater, UVa 11292) 你的王国里有一条n个头的恶龙,你 ...
- 如何提高scrapy的爬取效率
提高scrapy的爬取效率 增加并发: 默认scrapy开启的并发线程为32个,可以适当进行增加.在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置 ...
- 缺少libtool依赖导致编译安装失败
今天安装一个测试数据库的过程中,编译安装rlwrap工具时出错. 如下. [root@DB1 rlwrap-0.37]# ./configure checking build system type. ...
- 方法引用(Method reference)和invokedynamic指令详细分析
方法引用(Method reference)和invokedynamic指令详细分析 invokedynamic是jvm指令集里面最复杂的一条.本文将详细分析invokedynamic指令是如何实现方 ...
- js常见报错解决方法
1.获得类名document.getElementsClassName(常出现一个问题): getClassName("gn","pt")[0].appendC ...
- java中锁
s锁的作用是就是保证线程安全,但是从另外成都讲影响了效率: 1 synchronized关键字 这个是虚拟机底层实现的, java中的关键字,内部实现为监视器锁,主要是通过对象监视器在对象头中的字段来 ...
- selenium(python)用HTMLTestRunner导出报告(断言)信息的显示
导出报告如图所示,没有显示相关信息 修改HTMLTestRunner.py文件的763-768行,注释掉if else,保留else 的uo = o 再次运行可看到信息(测试用例中的print信息也会 ...