[Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows:
Given two sequences s and t, find the length of the longest sequence r, which is a subsequence of both s and t.
Do you know the difference between substring and subequence? Well, substring is a contiguous series of characters while subsequence is not necessarily. For example, "abc" is a both a substring and a subseqeunce of "abcde" while "ade" is only a subsequence.
This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest subsequence ends at i of s and j of t. Then the state equations are
- P[i][j] = max(P[i][j - 1], P[i - 1][j]) if s[i] != t[j];
- P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].
This algorithm gives the length of the longest common subsequence. The code is as follows.
int longestCommonSubsequence(string s, string t) {
int m = s.length(), n = t.length();
vector<vector<int> > dp(m + , vector<int> (n + , ));
for (int i = ; i <= m; i++)
for (int j = ; j <= n; j++)
dp[i][j] = (s[i - ] == t[j - ] ? dp[i - ][j - ] + : max(dp[i - ][j], dp[i][j - ]));
return dp[m][n];
}
Well, this code has both time and space complexity of O(m*n). Note that when we update dp[i][j], we only need dp[i - 1][j - 1], dp[i - 1][j] and dp[i][j - 1]. So we simply need to maintain two columns for them. The code is as follows.
int longestCommonSubsequenceSpaceEfficient(string s, string t) {
int m = s.length(), n = t.length();
int maxlen = ;
vector<int> pre(m, );
vector<int> cur(m, );
pre[] = (s[] == t[]);
maxlen = max(maxlen, pre[]);
for (int i = ; i < m; i++) {
if (s[i] == t[] || pre[i - ] == ) pre[i] = ;
maxlen = max(maxlen, pre[i]);
}
for (int j = ; j < n; j++) {
if (s[] == t[j] || pre[] == ) cur[] = ;
maxlen = max(maxlen, cur[]);
for (int i = ; i < m; i++) {
if (s[i] == t[j]) cur[i] = pre[i - ] + ;
else cur[i] = max(cur[i - ], pre[i]);
maxlen = max(maxlen, cur[i]);
}
swap(pre, cur);
fill(cur.begin(), cur.end(), );
}
return maxlen;
}
Well, keeping two columns is just for retriving pre[i - 1], we can maintain a single variable for it and keep only one column. The code becomes more efficient and also shorter. However, you may need to run some examples to see how it achieves the things done by the two-column version.
int longestCommonSubsequenceSpaceMoreEfficient(string s, string t) {
int m = s.length(), n = t.length();
vector<int> cur(m + , );
for (int j = ; j <= n; j++) {
int pre = ;
for (int i = ; i <= m; i++) {
int temp = cur[i];
cur[i] = (s[i - ] == t[j - ] ? pre + : max(cur[i], cur[i - ]));
pre = temp;
}
}
return cur[m];
}
Now you may try this problem on UVa Online Judge and get Accepted:)
Of course, the above code only returns the length of the longest common subsequence. If you want to print the lcs itself, you need to visit the 2-d table from bottom-right to top-left. The detailed algorithm is clearly explained here. The code is as follows.
int longestCommonSubsequence(string s, string t) {
int m = s.length(), n = t.length();
vector<vector<int> > dp(m + , vector<int> (n + , ));
for (int i = ; i <= m; i++)
for (int j = ; j <= n; j++)
dp[i][j] = (s[i - ] == t[j - ] ? dp[i - ][j - ] + : max(dp[i - ][j], dp[i][j - ]));
int len = dp[m][n];
// Print out the longest common subsequence
string lcs(len, ' ');
for (int i = m, j = n, index = len - ; i > && j > ;) {
if (s[i - ] == t[j - ]) {
lcs[index--] = s[i - ];
i--;
j--;
}
else if (dp[i - ][j] > dp[i][j - ]) i--;
else j--;
}
printf("%s\n", lcs.c_str());
return len;
}
[Algorithms] Longest Common Subsequence的更多相关文章
- [Algorithms] Using Dynamic Programming to Solve longest common subsequence problem
Let's say we have two strings: str1 = 'ACDEB' str2 = 'AEBC' We need to find the longest common subse ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- [UCSD白板题] Longest Common Subsequence of Three Sequences
Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- Longest Common Subsequence
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Dynamic Programming | Set 4 (Longest Common Subsequence)
首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
随机推荐
- kettle--组件(1)--值映射
组件:值映射 如下如所示: 首先,给出官方给出的文档: 个人理解: Target field name:可以理解为将source column的字段复制为另一个target column的名字. De ...
- C#指南,重温基础,展望远方!(6)C#类和对象
类是最基本的 C# 类型. 类是一种数据结构,可在一个单元中就将状态(字段)和操作(方法和其他函数成员)结合起来. 类为动态创建的类实例(亦称为“对象”)提供了定义. 类支持继承和多形性,即派生类可以 ...
- mongodb - save()和insert()的区别
遇到_id相同的情况下:insert操作会报错:save完成保存操作 > db.person.find() > db.person.insert({"_id":1,ag ...
- LNMP架构三
Nginx代理(正向代理) 正向代理:让局域网内的用户 访问外网,外网不能访问局域网, 场景:如果要从国内访问美国的服务器会很慢,这时候就可以找个香港服务器做代理,香港访问美国是很快的. 代理服务器作 ...
- 将Cmder添加到系统右键菜单中
1.把 Cmder 加到环境变量 把Cmder.exe存放的目录添加到系统环境变量: 加完之后,Win+r一下输入cmder,即可. 2.添加 cmder 到右键菜单:环境变量添加后,在任意文件夹中即 ...
- unity,set ugui rectTransform anchor by script
如果想用代码实现与下面面板相同的功能 试验可知改变上面选项下面四个值也随之变化: 所以说明二者是一回事儿. 因此,只要通过代码修改RectTransform的anchorMax和anchorMin成员 ...
- [svc]alpha、beta、rc各版本区别
参考:http://www.ttlsa.com/linux/alpha-beta-rc/ 很多软件在正式发布前都会发布一些预览版或者测试版,一般都叫"beta版"或者 " ...
- 谷歌上不去了,长久解决方式。能够稳定高速上Google和Gmail
稳定上Google的神器 国内Google很不稳定.速度慢且常常上不去,通过"我要上Google".能够安全稳定地使用Google.Gmail.Google+等平时须要特殊手段才干 ...
- 解决 Netbeans Ant: taskdef class org.netbeans.modules.java.j2seproject.copylibstask.CopyLibs cannot be found
你在用Netbeans(实际上是Ant)Clean and Build你的项目生成可执行文件(例如Windows下的exe文件)时候遇到报错 或者遇到这样的报错: The libs.CopyLibs. ...
- jsp中判断对象是否存在
<!-- 如果user对象存在,则显示用户名,如果不存在,则显示空值--> <input type="text" id="userName" ...