转自:http://blog.chinaunix.net/uid-12461657-id-3353217.html

一、什么叫抢占
所谓抢占,说白了就是进程切换。
linux的用户空间,进程A在执行中,来(硬?)中断打断A,从中断处理程序返回时,如果有更高优先级进程B在排队的话,那么执行进程B。 用户空间下进程总是可抢占的

在linux的内核空间就不一定了,linux 2.4是不可抢占的,实时性就会降低,如下面这个样子:


二、抢占的API

preempt_enable()  开启抢占
preempt_disable() 禁止抢占

内核中每个进程数据结构里有一个计数器preempt_count
抢占的开启与禁止,操作当前进程的preempt_count
内核在进行进程调度的时候,只要prempt_count为0,内核就可以进行抢占。
    struct thread_info {
        struct task_struct *task; /* main task structure */
        ............//省略
        int     cpu;              /* cpu we're on */
        int     preempt_count;    /* 0 => preemptable,  <0 => BUG */
    };

#define preempt_enable() \
    do { \
        preempt_enable_no_resched(); \
        barrier(); \
        preempt_check_resched(); \
    } while (0)

#define preempt_disable() \
    do { \
        inc_preempt_count(); \
        barrier(); \
    } while (0)

#define preempt_enable_no_resched() \
    do { \
        barrier(); \
        dec_preempt_count(); \
    } while (0)

#define inc_preempt_count() add_preempt_count(1)
    #define dec_preempt_count() sub_preempt_count(1)
    #define add_preempt_count(val) do { preempt_count() += (val); } while (0)
    #define sub_preempt_count(val) do { preempt_count() -= (val); } while (0)
    #define preempt_count() (current_thread_info()->preempt_count)

三、发生抢占的时机
linux进程调度的核心函数是 schedule(),进程调度就是在这里做的。
schedule的调用分为主动调用和被动调用。
主动调用是指内核显示的直接去调用shedule(),如当前进程调用了可休眠函数,里面会调用schedule
被动调用是指在系统调用、中断处理或异常处理结束之后,由相应的回调函数调用schedule
判断完当前进程是否可抢占,才会接着去调用schedule()

只看了看中断返回时schedule被动调用的情况
至于主动调用的地方就太多了,什么进程结束,pause等等,没耐心看了。。。

3.1 从中断返回时

首先是从中断处理程序do_IRQ()返回后,会调用ret_from_except() (看《PowerPC中断相关知识》)
ret_from_except()里要先check一下,判定前面被中断的执行体是运行在用户空间还是内核空间,
在决定返回到用户空间或内核空间

用户空间的话:(现在知道为什么用户空间程序总是可抢占了吧) 
ret_from_except 
   --> user_exc_return 
        --> do_work 
          --> 调用 do_signal 和 schedule

内核空间的话:(编译内核时要打开可抢占选项才行)
ret_form_except 
    --> resume_kernel 
        --> preempt_schedule_irq 
          --> schedule

.globl ret_from_except
ret_from_except:
LOAD_MSR_KERNEL(r10,MSR_KERNEL)  //将MSR_KERNEL常量设置到MSR,以禁止外部中断
SYNC                             //Some chip revs have problems here...
MTMSRD(r10)                      //disable interrupts

lwz r3,_MSR(r1)                  //读栈中的MSR[PR],Returning to user mode?
andi. r0,r3,MSR_PR
beq resume_kernel

user_exc_return:                   //r10 contains MSR_KERNEL here
rlwinm r9,r1,0,0,(31-THREAD_SHIFT) //Check current_thread_info()->flags
lwz r9,TI_FLAGS(r9)
andi. r0,r9,(_TIF_SIGPENDING|_TIF_RESTORE_SIGMASK|_TIF_NEED_RESCHED)
bne do_work
restore_user:

#ifdef CONFIG_PREEMPT
b restore

resume_kernel:
rlwinm r9,r1,0,0,(31-THREAD_SHIFT) /* check current_thread_info->preempt_count */
lwz r0,TI_PREEMPT(r9)
cmpwi 0,r0,0                       /* if non-zero, just restore regs and return */
bne restore
lwz r0,TI_FLAGS(r9)
andi. r0,r0,_TIF_NEED_RESCHED
beq+ restore
andi. r0,r3,MSR_EE                /* interrupts off? */
beq restore                       /* don't schedule if so */
1: bl preempt_schedule_irq
rlwinm r9,r1,0,0,(31-THREAD_SHIFT)
lwz r3,TI_FLAGS(r9)
andi. r0,r3,_TIF_NEED_RESCHED
bne- 1b
#else
resume_kernel:
#endif /* CONFIG_PREEMPT */
////////////////////////////////////////////////////////////////////////////////////
do_work:            /* r10 contains MSR_KERNEL here */
    andi.   r0,r9,_TIF_NEED_RESCHED
    beq do_user_signal

do_resched:         /* r10 contains MSR_KERNEL here */
    ori r10,r10,MSR_EE
    SYNC
    MTMSRD(r10)     /* hard-enable interrupts */
    bl  schedule
recheck:
    LOAD_MSR_KERNEL(r10,MSR_KERNEL)
    SYNC
    MTMSRD(r10)     /* disable interrupts */
    rlwinm  r9,r1,0,0,(31-THREAD_SHIFT)
    lwz r9,TI_FLAGS(r9)
    andi.   r0,r9,_TIF_NEED_RESCHED
    bne-    do_reschedandi.   r0,r9,_TIF_SIGPENDING
    beq restore_user
do_user_signal:         /* r10 contains MSR_KERNEL here */

asmlinkage void __sched preempt_schedule_irq(void){
    struct thread_info *ti = current_thread_info();
    BUG_ON(ti->preempt_count || !irqs_disabled());
    do {
        add_preempt_count(PREEMPT_ACTIVE);
        local_irq_enable();
        schedule();
        local_irq_disable();
        sub_preempt_count(PREEMPT_ACTIVE);
        barrier();
    } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}

asmlinkage void __sched preempt_schedule(void){
    struct thread_info *ti = current_thread_info();
    //preempt_cout非0的话,就不调用schedule
    if (likely(ti->preempt_count || irqs_disabled()))
        return;

do {
        add_preempt_count(PREEMPT_ACTIVE);
        schedule();
        sub_preempt_count(PREEMPT_ACTIVE);
        barrier();
    } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}
#########################################################################################;
 内核中的执行路径主要有:
 1  用户进程的内核态,此时有进程context,主要是代表进程在执行系统调用等。
    还包括,内核中自己的进程,如 ksoftirqd 等等
 2  中断或者异常或者自陷等,从概念上说,此时没有进程context,不能进行context switch。
 3  bottom_half,从概念上说,此时也没有进程context。
 4  同时,相同的执行路径还可能在其他的CPU上运行。

Linux2.6中网络代码中的preempt_enable/disable移到softirqd调用的地方原因是这样的.
一、部分softirq是isr处理之后调用的,
    对于这部分代码,由于是在底半处理中运行,必须是是在运行进程系统调用之前返回的.
    所以实际上preempt_disable(); preempt_enable();代码对于他们来说是没有意义的.
二、部分softirq是在ksoftirqd的内核线程运行的,
    因为这个相当于运行在进程的内核空间,由于软中断都是对中断上半部的继续,
    所以这些工作都需要尽快的完成.所以在softirqd运行的时候,禁止了preempt,
    这样就可以保证softirq运行完之后才会调度下一个进程,因为softirq里面的所有函数都不会睡眠.

内核抢占实现(preempt) 【转】的更多相关文章

  1. Linux内核抢占与中断返回【转】

    转自:http://blog.csdn.net/tommy_wxie/article/details/7425728 版权声明:本文为博主原创文章,未经博主允许不得转载. [html] view pl ...

  2. Linux用户抢占和内核抢占详解(概念, 实现和触发时机)--Linux进程的管理与调度(二十)

    1 非抢占式和可抢占式内核 为了简化问题,我使用嵌入式实时系统uC/OS作为例子 首先要指出的是,uC/OS只有内核态,没有用户态,这和Linux不一样 多任务系统中, 内核负责管理各个任务, 或者说 ...

  3. Linux内核抢占实现机制分析【转】

    Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介 ...

  4. Linux下的内核抢占

    2017-03-03 很遗憾之前在介绍进程调度的文章中,虽然涉及到了内核抢占,但是却没有对其进行深入介绍,今天就稍微总结下内核抢占. 内核抢占在一定程度上减少了对某种事件的响应延迟,这也是内核抢占被引 ...

  5. Linux2.6内核--抢占

    [摘要]本文首先介绍非抢占式内核(Non-Preemptive Kernel)和可抢占式内核(Preemptive Kernel)的区别.接着分析Linux下有两种抢占:用户态抢占(User Pree ...

  6. 20169212《Linux内核原理与分析》第七周作业

    实验 给MenuOS增加time和time-asm命令的方法: 更新menu代码到最新版 再main()函数中增加MenuConfig 增加对应的Time函数和TimeAsm函数(这里的函数要换成我们 ...

  7. MIT6.828 Lab4 Preemptive Multitasking(下)

    Lab4 Preemptive Multitasking(下) lab4的第二部分要求我们实现fork的cow.在整个lab的第一部分我们实现了对多cpu的支持和再多系统环境中的切换,但是最后分析的时 ...

  8. 抢占式内核与非抢占式内核中的自旋锁(spinlock)的差别

    一.概括 (1)自旋锁适用于SMP系统,UP系统用spinlock是作死. (2)保护模式下禁止内核抢占的方法:1.运行终端服务例程时2.运行软中断和tasklet时3.设置本地CPU计数器preem ...

  9. Linux内核原子(1) - spinlock的实现

    spinlock的数据结构spinlock_t定义在头文件linux/spinlock_types.h里面: typedef struct { raw_spinlock_t raw_lock; #if ...

随机推荐

  1. P4316 绿豆蛙的归宿

    题意翻译 「Poetize3」 题目背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 题目描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出 ...

  2. Vika and Segments - CF610D

    Vika has an infinite sheet of squared paper. Initially all squares are white. She introduced a two-d ...

  3. [NOI2006]网络收费

    题面在这里 description 一棵\(2^n\)个叶节点的满二叉树,每个节点代表一个用户,有一个预先的收费方案\(A\)或\(B\); 对于任两个用户 \(i,j(1≤i<j≤2^n)i, ...

  4. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  5. Linux实验二

    一        第一个实验 Linux基础 1 通过娄老师关于分析学霸学渣的前言 明白了真正的学习一门功课应该是思考本质 而不是纯属记忆 2 全部的命令如下 Linux命令格式:command [o ...

  6. ES6 Set,WeakSet,Map,WeakMap

    1. Set Set是一个集合,里面的值都是唯一的,没有重复的.Set中可以是任何数据类型,并且添加数据时会进行严格比较,重复数据无法加入. 2. WeakSet 弱引用Set.只能存储对象,不能存储 ...

  7. win10下ndk编译arm可执行体

    编译参考文章 http://blog.csdn.net/john_1984/article/details/12622215 一.编写soLoader主文件 soLoader.c内容: #includ ...

  8. 页面元素的CSS渲染优先级

    样式的优先级 多重样式(Multiple Styles):如果外部样式.内部样式和内联样式同时应用于同一个元素,就是使多重样式的情况. 一般情况下,优先级如下:(外部样式)External style ...

  9. JS实现的随机乱撞的彩色圆球特效代码

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. HDU 1950 LIS(nlogn)

    Bridging signals Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...