bzoj 1220 跳蚤
Written with StackEdit.
Description
\(Z\)城市居住着很多只跳蚤。在\(Z\)城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有\(N+1\)个自然数。其中最后一个是\(M\),而前\(N\)个数都不超过\(M\),卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数\(S\),然后向左,或向右跳\(S\)个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。比如当\(N=2,M=18\)时,持有卡片\((10, 15, 18)\)的跳蚤,就可以完成任务:他可以先向左跳\(10\)个单位长度,然后再连向左跳\(3\)次,每次\(15\)个单位长度,最后再向右连跳\(3\)次,每次\(18\)个单位长度。而持有卡片\((12, 15, 18)\)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。当确定\(N\)和\(M\)后,显然一共有\(M^N\)张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。
Input
输入文件有且仅有一行,包括用空格分开的两个整数\(N\)和\(M\)。
Output
输出文件有且仅有一行,即可以完成任务的卡片数.\(1≤M≤10^8,1≤N≤M,\)且\(M^N≤10^16.\)
Sample Input
2 4
Sample Output
12
Solution
- 显然,根据裴蜀定理,满足\(gcd(a_1,a_2,a_3,......a_n,M)=1\)的即为一组解.我们要对其进行计数.
- 考虑用所有的方案\(M^N\)减去\(gcd\)不为\(1\)的数.
- 因为最后一个数为\(M\),所以\(gcd\)一定是\(M\)的约数.
- 将\(M\)分解质因数后,二进制枚举质因数的组合情况.
- 若当前组合出来的数是\(prod\),那么是\(prod\)倍数的有\(\frac{p}{prod}\)个.
- 那么这样的方案数为\((\frac{p}{prod})^N.\)
- 由于会产生重复计数,所以需要容斥处理.奇数个质因子\(+\),偶数个\(-\).
这样看来,\(M^N\)也是一种特殊情况,\(prod=1\),个数为\(0\),所以用加.
#include<bits/stdc++.h>
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
int n,m;
LoveLive fpow(LoveLive a,LoveLive b)
{
LoveLive res=1;
while(b)
{
if(b&1)
res*=a;
a*=a;
b>>=1;
}
return res;
}
LoveLive factor[50];
int main()
{
n=read(),m=read();
LoveLive ans=fpow(m,n);
int p=m,siz=0;
for(int i=2;i*i<=p;++i)
if(p%i==0)
{
factor[++siz]=i;
while(p%i==0)
p/=i;
}
if(p>1)
factor[++siz]=p;
LoveLive lim=(1<<siz)-1;//质因数的组合方式,二进制枚举
for(LoveLive i=1;i<=lim;++i)
{
LoveLive prod=1,cnt=0;//乘积与这种方案的质因数个数
for(int j=1;j<=siz;++j)
if((i>>(j-1))&1)
{
prod*=factor[j];
++cnt;
}
if(cnt&1)
ans-=fpow(m/prod,n);
else
ans+=fpow(m/prod,n);
}
printf("%lld\n",ans);
return 0;
}
bzoj 1220 跳蚤的更多相关文章
- bzoj 4310: 跳蚤
Description 很久很久以前,森林里住着一群跳蚤.一天,跳蚤国王得到了一个神秘的字符串,它想进行研究. 首先,他会把串分成不超过 k 个子串,然后对于每个子串 S,他会从S的所有子串中选择字典 ...
- ●BZOJ 4310 跳蚤
●赘述题目 给出一个字符串,要求分成k个子串,然后求出每个子串的字典序最大的子串(我称它为子子串),要使这k个子子串中的字典序最大的那个串(即魔力串)最小.输出该魔力串. (本题个人感觉很好,比较综合 ...
- bzoj 4310 跳蚤——后缀数组+二分答案+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4310 答案有单调性? 二分出来一个子串,判断的时候需要满足那些字典序比它大的子串都不出现! ...
- bzoj 4310 跳蚤 二分答案+后缀数组/后缀树
题目大意 给定\(k\)和长度\(\le10^5\)的串S 把串分成不超过\(k\)个子串,然后对于每个子串\(s\),他会从\(s\)的所有子串中选择字典序最大的那一个,并在选出来的\(k\)个子串 ...
- bzoj 4310 跳蚤 —— 后缀数组+二分答案+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4310 二分答案——在本质不同的子串中二分答案! 如果二分到的子串位置是 st,考虑何时必须分 ...
- bzoj 4310: 跳蚤【后缀数组+st表+二分+贪心】
先求一下SA 本质不同的子串个数是\( \sum n-sa[i]+1-he[i] \),按字典序二分子串,判断的时候贪心,也就是从后往前扫字符串,如果当前子串串字典序大于二分的mid子串就切一下,然后 ...
- 后缀数组 hash求LCP BZOJ 4310: 跳蚤
后缀数组的题博客里没放进去过..所以挖了一题写写 充实下博客 顺便留作板子.. 一个字符串S中 内容不同的子串 有 sigma{n-sa[i]+1-h[i]} (噢 这里的h[]就是大家熟知的he ...
- 跳蚤 BZOJ 4310
跳蚤 [问题描述] 很久很久以前,森林里住着一群跳蚤.一天,跳蚤国王得到了一个神秘的字符串,它想进行研究. 首先,他会把串分成不超过 k 个子串,然后对于每个子串 S,他会从S的所有子串中选择字典序最 ...
- bzoj千题计划157:bzoj1220:[HNOI2002]跳蚤
扩展欧几里得:ax+by=gcd(a,b) 一定有解 能跳到左边一格,即ax+by=-1 若a,b的gcd=1,则一定有解 所以问题转化为 求n个不大于m的数,他们与m的gcd=1 的方案数 容斥原理 ...
随机推荐
- VMWare 网络连接模式(bridged、NAT、host-only)详解
转自VMWare 网络连接模式(bridged.NAT.host-only)详解 host-only 在某些特殊的网络调试环境中,如何要求将真实环境和虚拟环境隔离开,这时你就可采用host-only模 ...
- poj2533
/*解题思路请看给分类的最长递增子序列算法解析那篇文章*/ #include<stdio.h> #include<string.h> int find(int *c,int l ...
- 【Java】流与文件(端口 & 文件读写对象)
概述: 1.input和output是相对于内存而言的.输入(input)就是写入到内存里,输出(output)就是把内存里的东西写到外面. 2.操作内存里的东西非常便利,要么声明变量,要么new对象 ...
- Dubbo与微服务
http访问到服务器要经过的内容:Nginx —Tomcat –db,nginx就是一个负载均衡左右.又一次面试问到了我nginx的反向代理.现在想了想面试官要问的应该是 域名的反向代理,就是使用一个 ...
- Python3.x:PDFMiner3k在线、本地解析pdf
Python3.x:PDFMiner3k在线.本地解析pdf 安装 pip install pdfminer3k 示例一:在线解析pdf ''' Demo:pdf2htmlex解析pdf Dateti ...
- Nginx URL跳转
配置需求 注:$document_uri 表示访问的url 需求:访问 www.abc.com 请求到 www.abc.com/abc/ 使用操作 1.在nginx配置文件中加入 if ($doc ...
- 函数:生成n个互不相同的随机数,最大值为upper
参考:http://blog.csdn.net/zhangkaihang/article/details/6836506 函数getRandArray()功能说明: 入参:int upper-生成的随 ...
- Ubuntu系统Anaconda下载安装与切换源教程【转】
本文转载自:https://blog.csdn.net/qq_36268036/article/details/81517893 1. 下载安装: 这里选用国内清华大学的Tuna开源软件镜像站作为演示 ...
- Linux系统下使用pwgen生成密码的使用教程
pwgen生成的密码易于记忆且相当安全.从技术上来说,容易记忆的密码不会比随机生成的密码更加安全.但是,在大多数情况下,pwgen生成的密码已经足够安全,除了网银密码等需要高安全等级的情况外.使用易于 ...
- [Android]AndFix使用说明
AndFix使用说明 AndFix,全称是Android hot-fix.是阿里开源的一个热补丁框架,允许APP在不重新发布版本的情况下修复线上的bug.支持Android 2.3 到 6.0,并且支 ...