Japan POJ - 3067 转化思维 转化为求逆序对
Input
Output
Test case (case number): (number of crossings)
Sample Input
1
3 4 4
1 4
2 3
3 2
3 1
Sample OutputTest case 1:
题目大意:一个平面,左边自上而下排列了N个点,
标号为1,...,N,
右边自上而下排列了M个点,
标号为1,...,M,它们之间有K条线段相连
,每条线段有两个值:x,y,
表示该线段连接了左边的标号为x的点和右边的标号为y的点,
问有多少个交点
仔细想下 这不就是求逆序对吗
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("DATA.txt","r",stdin)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000") using namespace std;
typedef long long LL ;
const int maxn = 1e6 + ;
LL c[maxn];
int t, n, m, k, cas = ;
struct node {
int x, y;
} a[maxn];
int cmp(node a, node b) {
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
void update(int x) {
while(x <= m) {
c[x] += ;
x += lowbit(x);
}
}
int getans(int x) {
int s = ;
for(int i = x; i > ; i -= lowbit(i))
s += c[i];
return s;
}
int main() {
scanf("%d", &t);
while(t--) {
scanf("%d%d%d", &n, &m, &k);
memset(c, , sizeof(c));
for (int i = ; i <= k ; i++)
scanf("%d%d", &a[i].x, &a[i].y);
sort(a + , a + k + , cmp);
LL ans = ;
for (int i = ; i <= k ; i++) {
ans += getans(m) - getans(a[i].y);
update(a[i].y);
}
printf("Test case %d: %lld\n", cas++, ans);
}
return ;
}
Japan POJ - 3067 转化思维 转化为求逆序对的更多相关文章
- POJ 2299 树状数组+离散化求逆序对
给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...
- POJ 3067 - Japan - [归并排序/树状数组(BIT)求逆序对]
Time Limit: 1000MS Memory Limit: 65536K Description Japan plans to welcome the ACM ICPC World Finals ...
- 树状数组求逆序对:POJ 2299、3067
前几天开始看树状数组了,然后开始找题来刷. 首先是 POJ 2299 Ultra-QuickSort: http://poj.org/problem?id=2299 这题是指给你一个无序序列,只能交换 ...
- POJ 2299 Ultra-QuickSort 离散化加树状数组求逆序对
http://poj.org/problem?id=2299 题意:求逆序对 题解:用树状数组.每读入一个数x,另a[x]=1.那么a数列的前缀和s[x]即为x前面(或者说,再x之前读入)小于x的个数 ...
- POJ 2299树状数组求逆序对
求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...
- Ultra-QuickSort POJ - 2299 树状数组求逆序对
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a seque ...
- POJ 4020 NEERC John's inversion 贪心+归并求逆序对
题意:给你n张卡,每张卡上有蓝色和红色的两种数字,求一种排列使得对应颜色数字之间形成的逆序对总数最小 题解:贪心,先按蓝色排序,数字相同再按红色排,那么蓝色数字的逆序总数为0,考虑交换红色的数字消除逆 ...
- POJ 2299 求逆序对个数 归并排序 Or数据结构
题意: 求逆序对个数 没有重复数字 线段树实现: 离散化. 单点修改,区间求和 // by SiriusRen #include <cstdio> #include <cstring ...
- 归并排序求逆序对(poj 2299)
归并排序求逆序对 题目大意 给你多个序列,让你求出每个序列中逆序对的数量. 输入:每组数据以一个数 n 开头,以下n行,每行一个数字,代表这个序列: 输出:对于输出对应该组数据的逆序对的数量: 顺便在 ...
随机推荐
- TW实习日记:第20-21天
为什么上周五没写呢,因为上周五一直在熟悉业务流程...根本不会写一些复杂的业务代码,因为没有业务流程图!!!在学校的上需求分析和UML建模课的时候,还有软件工程课的时候,想着这都什么鬼啊,听来干嘛,写 ...
- HDU - 6409:没有兄弟的舞会(数学+思维)
链接:HDU - 6409:没有兄弟的舞会 题意: 题解: 求出最大的 l[i] 的最大值 L 和 r[i] 的最大值 R,那么 h 一定在 [L, R] 中.枚举每一个最大值,那么每一个区间的对于答 ...
- Java基础知识:Java实现Map集合二级联动1
Java实现Map集合二级联动 Map集合可以保存键值映射关系,这非常适合本实例所需要的数据结构,所有省份信息可以保存为Map集合的键,而每个键可以保存对应的城市信息,本实例就是利用Map集合实现了省 ...
- Turtlebot
Turtlebot2 数据分析: imu信息:只有z轴的旋转yaw,没有xy的角速度. odom:利用轮速计,提供平移变换,没有z方向的平移. 好的网站,详细介绍了turtlebot的使用:https ...
- Hadoop第一课:Hadoop集群环境搭建
一. 检查列表 1.1.网络访问 设置电脑IP以及可以访问网络设置:进入etc/sysconfig/network-scripts/,使用命令“ls -all” 查看文件.会看到ifcfg-lo文件然 ...
- POJ 2540 Hotter Colder(半平面交)
Description The children's game Hotter Colder is played as follows. Player A leaves the room while p ...
- php分页类的实现与调用 (自我摘记)
page.class.php <?php namespace Component; class Page { private $total; //数据表中总记录数 private $listRo ...
- 【Linux】- vi/vim
所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体颜色辨别语法的正 ...
- MongoDb企业应用实战(一) 写在MongoDB应用介绍之前(ii)
上一篇: MongoDb企业应用实战(一) 写在MongoDB应用介绍之前(i) 有段时间没跟大家去分享和探讨过一些问题,分享过一些经验了(失败过的,痛苦过的才最有看点啊,不知道各位同仁们怎么去看这个 ...
- Tomcat 设计模式分析
门面设计模式 门面设计模式在 Tomcat 中有多处使用,在 Request 和 Response 对象封装中.Standard Wrapper 到 ServletConfig 封装中.Applica ...